论文标题
用时间依赖的超发链欧拉 - 拉格兰奇方法研究的bose气中的相互作用淬灭
Interaction quenches in Bose gases studied with a time-dependent hypernetted-chain Euler-Lagrange method
论文作者
论文摘要
我们提出了一种新的变分方法,以研究封闭的骨髓多体系统的动力学,即时间依赖性的超链链Euler-Lagrange方法THNC。基于jastrow ansatz,它以非扰动方式解释了量子波动。 THNC随维度的数量而言很好,如我们在一个,两个和三个维度上的结果所证明的那样。我们将THNC方法应用于相互作用的猝灭,即相互作用强度的突然变化,在均匀的bose气体中。当淬灭足够强,最终状态具有Roton激发(如偶极和Rydberg戴的Bose-Einstein冷凝物分别发现并预测)时,配对分布函数表现出稳定的振荡。为了进行验证,我们将THNC结果与时间依赖性变异的蒙特卡洛进行了比较。
We present a new variational method to study the dynamics of a closed bosonic many-body system, the time-dependent hypernetted-chain Euler-Lagrange method, tHNC . Based on the Jastrow ansatz, it accounts for quantum fluctuations in a non-perturbative way. tHNC scales well with the number of dimensions, as demonstrated by our results on one, two, and three dimensions. We apply the tHNC method to interaction quenches, i.e. sudden changes of the interaction strength, in homogeneous Bose gases. When the quench is strong enough that the final state has roton excitations (as found and predicted for dipolar and Rydberg-dressed Bose-Einstein condensates, respectively), the pair distribution function exhibits stable oscillations. For validation, we compare tHNC results with time-dependent variational Monte Carlo results in one and two dimensions.