论文标题
协变量的立方体相互作用顶点,用于无质量和庞大的整数较高自旋场
Covariant Cubic Interacting Vertices for Massless and Massive Integer Higher Spin Fields
论文作者
论文摘要
我们开发了BRST方法,以在$ D $维的Minkowski空间上构建一般壳本地Lorentz Covariant Covariant Covariant Covariant Cutaction顶点。我们考虑了两种不同的较高自旋场相互作用的情况:一个巨大的和两个无质量的情况;有两个巨大的,都有一致的,不同的质量和一个无质量的旋转场$ s_1,s_2,s_3 $。与以前的立方顶点的结果不同,我们将早期的结果扩展到[arxiv:2105.12030 [hepth]]中,用于无质量领域,并使用完整的BRST运算符,包括用于制定具有明确插图的不可修复表示的痕量约束。我们以[arxiv:1205.3131 [hep-th]的形式概括为可降低可降低的高旋转场所提出的立方顶点,并以乘法和非义务BRST关闭的成分的形式进行计算,并计算了对顶点的新贡献,其中包含具有较小数量的磁场数量衍生词的其他项。我们证明,在[arxiv:1205.3131 [hepth]]中,如果没有无可检索的条件,就不可能提供非偶然的拉格朗日动力学,并为这些顶点找到明确的无条件解决方案。作为示例,我们明确地构建了有无辅助场的大量旋转$ s $场和无质量标量的相互作用的拉格朗日。具有不同三元组合的相互作用模型更高的自旋场:大量的自旋$ s $带有无质量标量和矢量场以及两个向量场;无质量的$λ$,带有无质量标量和巨大的矢量场;还考虑了两个巨大的旋转$ S,0 $和无质量标量的田地。
We develop the BRST approach to construct the general off-shell local Lorentz covariant cubic interaction vertices for irreducible massless and massive higher spin fields on $d$-dimensional Minkowski space. We consider two different cases for interacting higher spin fields: with one massive and two massless; with two massive both with coinciding and with different masses and one massless fields of spins $s_1, s_2, s_3$. Unlike the previous results on cubic vertices we extend our earlier result in [arXiv:2105.12030[hep-th]] for massless fields and employ the complete BRST operator, including the trace constraints that is used to formulate an irreducible representation with definite integer spin. We generalize the cubic vertices proposed for reducible higher spin fields in [arXiv:1205.3131 [hep-th]] in the form of multiplicative and non-multiplicative BRST-closed constituents and calculate the new contributions to the vertex, which contain additional terms with a smaller number space-time derivatives of the fields. We prove that without traceless conditions for the cubic vertices in [arXiv:1205.3131 [hep-th]] it is impossible to provide the noncontradictory Lagrangian dynamics and find explicit traceless solution for these vertices. As the examples, we explicitly construct the interacting Lagrangian for the massive of spin $s$ field and massless scalars both with and without auxiliary fields. The interacting models with different combinations of triples higher spin fields: massive of spin $s$ with massless scalar and vector fields and with two vector fields; massless of helicity $λ$ with massless scalar and massive vector fields; two massive fields of spins $s, 0$ and massless scalar are also considered.