论文标题

同意三角诱导真正的多部分纠缠措施

Concurrence triangle induced genuine multipartite entanglement measure

论文作者

Jin, Zhi-Xiang, Tao, Yuan-Hong, Gui, Yao-Ting, Fei, Shao-Ming, Li-Jost, Xianqing, Qiao, Cong-Feng

论文摘要

我们研究了对一般多部分状态的真正多部分纠缠(GME)的定量。通过利用对纠缠分布的限制来得出一组因$ n $ partite Pure状态所满足的不平等,表明每个部分与其其余零件之间的两部分纠缠不能超过其他合作伙伴的总和。然后,建立了一系列的三角形,称为并发三角形,与这些不平等相对应。因此,通过使用这些并发三角形的几何平均区域来构建适当的真实多部分纠缠措施,这些平均值是在本地操作和经典交流下不侵害的。 GME测量哪些部分可分开或与其余部分纠缠,以确保非真正的纠缠纯净状态。混合状态的GME措施是通过凸屋顶构造给出的,并通过基于状态净化的方法提出了检测多部分混合状态GME的证人。给出了详细的示例,以说明我们的GME措施的有效性。

We study the quantification of genuine multipartite entanglement (GME) for general multipartite states. A set of inequalities satisfied by the entanglement of $N$-partite pure states is derived by exploiting the restrictions on entanglement distributions, showing that the bipartite entanglement between each part and its remaining ones cannot exceed the sum of the other partners with their remaining ones. Then a series of triangles, named concurrence triangles, are established corresponding to these inequalities. Proper genuine multipartite entanglement measures are thus constructed by using the geometric mean area of these concurrence triangles, which are non-increasing under local operation and classical communication. The GME measures classify which parts are separable or entangled with the rest ones for non genuine entangled pure states. The GME measures for mixed states are given via the convex roof construction, and a witness to detect the GME of multipartite mixed states is presented by an approach based on state purifications. Detailed examples are given to illustrate the effectiveness of our GME measures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源