论文标题
视网膜成像中可解释的人工智能检测系统性疾病
Explainable Artificial Intelligence in Retinal Imaging for the detection of Systemic Diseases
论文作者
论文摘要
可解释的人工智能(AI)以一种可解释的半自动方法的形式来进行分级的眼科病理,例如糖尿病性视网膜病,高血压视网膜病和其他视网膜病,在主要全身性疾病的背景下。实验研究旨在评估可解释的分级过程,而无需直接使用深层卷积神经网络(CNN)。当前用于诊断视网膜疾病的许多基于CNN的深神经网络可能具有明显的性能,但无法确定推动其决策的基础。为了提高这些决策的透明度,我们提出了一位临床医生在环上的智能工作流,该工作流对眼底图像进行视网膜血管评估,以得出可量化和描述性参数。视网膜血管参数元数据充当超参数,以更好地解释和解释决策。半自动方法的目的是在医疗保健应用中采用联合AI的联合方法,并提供更多的临床医生投入和解释。通过图像处理技术,用于视盘检测,血管分割和小动脉/静脉识别的基线过程。
Explainable Artificial Intelligence (AI) in the form of an interpretable and semiautomatic approach to stage grading ocular pathologies such as Diabetic retinopathy, Hypertensive retinopathy, and other retinopathies on the backdrop of major systemic diseases. The experimental study aims to evaluate an explainable staged grading process without using deep Convolutional Neural Networks (CNNs) directly. Many current CNN-based deep neural networks used for diagnosing retinal disorders might have appreciable performance but fail to pinpoint the basis driving their decisions. To improve these decisions' transparency, we have proposed a clinician-in-the-loop assisted intelligent workflow that performs a retinal vascular assessment on the fundus images to derive quantifiable and descriptive parameters. The retinal vessel parameters meta-data serve as hyper-parameters for better interpretation and explainability of decisions. The semiautomatic methodology aims to have a federated approach to AI in healthcare applications with more inputs and interpretations from clinicians. The baseline process involved in the machine learning pipeline through image processing techniques for optic disc detection, vessel segmentation, and arteriole/venule identification.