论文标题

在有限密度下模拟2+1D晶格量子电动力学,并使用神经流量波函数

Simulating 2+1D Lattice Quantum Electrodynamics at Finite Density with Neural Flow Wavefunctions

论文作者

Chen, Zhuo, Luo, Di, Hu, Kaiwen, Clark, Bryan K.

论文摘要

我们提出神经流量波函数,量规效力阀,并使用它模拟具有有限密度动力学费米的2+1D晶格紧凑型量子电动力学。仪表场由神经网络表示,该神经网络参数化了基于离散的基于流动的振幅转换,而费米子标志结构则由神经净回流表示。这种方法直接代表$ u(1)$的自由度,而无需任何截断,通过构造遵守古斯的定律,样本自动调查避免了任何平衡时间,并变体模拟了具有符号问题的量规效力系统。在此模型中,我们研究了不同费米的密度和跳跃方案的限制和弦破坏现象。我们在零密度下研究了从电荷晶体到真空相的相变,并在有限密度下观察磁相互作用的相位分离和净电荷渗透阻断效应。此外,我们研究了由于费米子的动能与仪表场的磁能之间的竞争效应,因此研究了磁相变。通过我们的方法,我们进一步指出了连续$ u(1)$系统与有限截断的相变顺序的潜在差异。我们最先进的神经网络方法为研究不同的量学理论与较高维度的动力问题相结合的新可能性开辟了新的可能性。

We present a neural flow wavefunction, Gauge-Fermion FlowNet, and use it to simulate 2+1D lattice compact quantum electrodynamics with finite density dynamical fermions. The gauge field is represented by a neural network which parameterizes a discretized flow-based transformation of the amplitude while the fermionic sign structure is represented by a neural net backflow. This approach directly represents the $U(1)$ degree of freedom without any truncation, obeys Guass's law by construction, samples autoregressively avoiding any equilibration time, and variationally simulates Gauge-Fermion systems with sign problems accurately. In this model, we investigate confinement and string breaking phenomena in different fermion density and hopping regimes. We study the phase transition from the charge crystal phase to the vacuum phase at zero density, and observe the phase seperation and the net charge penetration blocking effect under magnetic interaction at finite density. In addition, we investigate a magnetic phase transition due to the competition effect between the kinetic energy of fermions and the magnetic energy of the gauge field. With our method, we further note potential differences on the order of the phase transitions between a continuous $U(1)$ system and one with finite truncation. Our state-of-the-art neural network approach opens up new possibilities to study different gauge theories coupled to dynamical matter in higher dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源