论文标题

具有单切正规电位和Fisher的toeplitz决定因素 - hartwig奇异性I.单位圆支撑的平衡度量

Toeplitz determinants with a one-cut regular potential and Fisher--Hartwig singularities I. Equilibrium measure supported on the unit circle

论文作者

Blackstone, Elliot, Charlier, Christophe, Lenells, Jonatan

论文摘要

我们考虑具有符号具有的toeplitz决定因素:(i)一个定期的潜在$ V $,(ii)Fisher- hartwig奇异性,以及(iii)背景中的平滑功能。潜在的$ V $与假定在整个单元圆上支持的平衡度量有关。对于恒定电势$ V $,平衡度量是单位圆的均匀度量,我们的公式将Fisher-Hartwig奇异性的Toeplitz决定因素降低为已知的结果。对于非恒定$ v $,即使没有Fisher-Hartwig奇异性,我们的结果似乎也是新的。作为结果的应用,我们得出了确定点过程的各种统计特性,该过程概括了圆形单一合奏。

We consider Toeplitz determinants whose symbol has: (i) a one-cut regular potential $V$, (ii) Fisher--Hartwig singularities, and (iii) a smooth function in the background. The potential $V$ is associated with an equilibrium measure that is assumed to be supported on the whole unit circle. For constant potentials $V$, the equilibrium measure is the uniform measure on the unit circle and our formulas reduce to well-known results for Toeplitz determinants with Fisher--Hartwig singularities. For non-constant $V$, our results appear to be new even in the case of no Fisher--Hartwig singularities. As applications of our results, we derive various statistical properties of a determinantal point process which generalizes the circular unitary ensemble.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源