论文标题
BOE溶液中融合二氧化硅玻璃微结构的深层多级湿蚀刻
Deep multilevel wet etching of fused silica glass microstructures in BOE solution
论文作者
论文摘要
融合二氧化硅玻璃是微型机械,微流体和光学设备的首选材料,由于其最终的耐化学性,光学,电气和机械性能。氢氟化溶液中的湿蚀刻,特别是缓冲氧化物蚀刻(BOE)溶液仍然是制造融合二氧化硅玻璃基的微型电视的关键方法。众所周知,由于融合玻璃的化学稳定性和极为侵略性的BOE性能,在深融合二氧化硅湿蚀刻期间的保护性面罩完整性是一个巨大的挑战。在这里,我们提出了一个多级融合的二氧化硅玻璃微观结构的制造路线,基于深湿蚀刻的踩踏面膜,只有一个灰度光刻步骤。首先,我们对BOE解决方案中的熔融石英溶解机制进行了深入的全面分析,并计算出BOE解决方案中$ hf^-_ 2 $,$ f^ - $,$ f^ - $,$ f^ - $,$ f^ - $(hf)_2 $组件的主要氟化物分数,作为pH和$ NH_4F的函数:$ nh_4f:在室温下的hf $。然后,我们通过实验研究BOE浓度($ NH_4F:HF $从1:1到14:1)对熔融电阻,蚀刻速率和曲线各向同性的影响,融合二氧化硅60分钟60分钟,通过金属/光泽剂掩模蚀刻。最后,我们证明了高质量的多级超过200 um各向同性湿蚀刻过程,其速率高达3 um/min,这对于带有弯曲悬浮液,惯性质量,微通道和整个滤波器孔的高级熔融熔融硅微电视可能引起极大的兴趣。
Fused silica glass is a material of choice for micromechanical, microfluidic, and optical devices due to its ultimate chemical resistance, optical, electrical, and mechanical performance. Wet etching in hydrofluoric solutions especially a buffered oxide etching (BOE) solution is still the key method for fabricating fused silica glass-based microdevices. It is well known that protective mask integrity during deep fused silica wet etching is a big challenge due to chemical stability of fused glass and extremely aggressive BOE properties. Here, we propose a multilevel fused silica glass microstructures fabrication route based on deep wet etching through a stepped mask with just a one grayscale photolithography step. First, we provide a deep comprehensive analysis of a fused quartz dissolution mechanism in BOE solution and calculate the main fluoride fractions like $HF^-_2$, $F^-$, $(HF)_2$ components in a BOE solution as a function of pH and $NH_4F:HF$ ratio at room temperature. Then, we experimentally investigate the influence of BOE concentration ($NH_4F:HF$ from 1:1 to 14:1) on the mask resistance, etch rate and profile isotropy during fused silica 60 minutes etching through a metal/photoresist mask. Finally, we demonstrate a high-quality multilevel over-200 um isotropic wet etching process with the rate up to 3 um/min, which could be of a great interest for advanced fused silica microdevices with flexure suspensions, inertial masses, microchannels, and through-wafer holes.