论文标题

PCA方法和基于证据的滤波飞机传感器故障诊断

PCA Methods and Evidence Based Filtering for Robust Aircraft Sensor Fault Diagnosis

论文作者

Cartocci, N., Costante, G., Napolitano, M. R., Valigi, P., Crocetti, F., Fravolini, M. L.

论文摘要

在本文中,PCA和D-PCA技术用于数据驱动的诊断故障隔离(FI)和故障估计(FE)方案(FE)的设计,该方案的18个半自治飞机的主要传感器。具体而言,已经考虑了基于贡献和基于重建的贡献方法。为了提高FI绩效,已经提出了从循证决策理论中得出的推论机制。根据实验数据,为真实的空速传感器提供了一项详细的FI和FE研究。基于证据的过滤(EBF)显示出非常有效的,特别是在减少错误警报方面。

In this paper PCA and D-PCA techniques are applied for the design of a Data Driven diagnostic Fault Isolation (FI) and Fault Estimation (FE) scheme for 18 primary sensors of a semi-autonomous aircraft. Specifically, Contributions-based, and Reconstruction-based Contributions approaches have been considered. To improve FI performance an inference mechanism derived from evidence-based decision making theory has been proposed. A detailed FI and FE study is presented for the True Airspeed sensor based on experimental data. Evidence Based Filtering (EBF) showed to be very effective particularly in reducing false alarms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源