论文标题
用虹膜观察1:模型概述和质量流量的询问太阳耀斑循环模型。
Interrogating Solar Flare Loop Models with IRIS Observations 1: Overview of the Models, and Mass flows
论文作者
论文摘要
在太阳气氛中,太阳火焰是短暂而戏剧性的事件,在此期间,大量磁性能够释放出来。随后将这种能量通过太阳大气或地球层运输,并与冠状质量弹性一起运输,这是空间天气的基本组成部分。因此,了解耀斑起作用的物理过程至关重要。这种理解通常需要使用正向建模,以预测太阳大气的流体动力和辐射反应。然后,必须通过观察结果批评这些预测,以向我们展示模型缺少成分的位置。虽然耀斑当然是3D现象,但在3D中模拟具有所需空间尺度的精确色球环的耀斑,在很大程度上超出了当前的计算能力,并且在3D中对能量传输机制的参数研究肯定尚未进行。因此,可以解决相关尺度的现场一致的1D循环模型在促进我们的耀斑知识方面起着至关重要的作用。近年来,部分是由界面区域成像光谱仪(IRIS)的壮观观察驱动的,耀斑环模型揭示了许多有趣的耀斑特征。对于这篇综述,我重点介绍了一些重要的结果,这些结果说明了攻击太阳耀斑问题的实用性,并结合了高质量的观察结果和最先进的耀斑循环模型,证明了:(1)模型如何解释模型从Iris中解释耀斑观察,(2)这些观察结果如何显示我们从模型中缺少物理学的位置,并改进了(3)模型,以及3)的质量质量素质,并提高了质量的质量。在这两个部分评论的论文1中,我提供了现代耀斑循环模型的概述,以及在太阳耀斑期间的电子束驱动的质量流。
Solar flares are transient yet dramatic events in the atmosphere of the Sun, during which a vast amount of magnetic energy is liberated. This energy is subsequently transported through the solar atmosphere or into the heliosphere, and together with coronal mass ejections flares comprise a fundamental component of space weather. Thus, understanding the physical processes at play in flares is vital. That understanding often requires the use of forward modelling in order to predict the hydrodynamic and radiative response of the solar atmosphere. Those predictions must then be critiqued by observations to show us where our models are missing ingredients. While flares are of course 3D phenomenon, simulating the flaring atmosphere including an accurate chromosphere with the required spatial scales in 3D is largely beyond current computational capabilities, and certainly performing parameter studies of energy transport mechanisms is not yet tractable in 3D. Therefore, field-aligned 1D loop models that can resolve the relevant scales have a crucial role to play in advancing our knowledge of flares. In recent years, driven in part by the spectacular observations from the Interface Region Imaging Spectrograph (IRIS), flare loop models have revealed many interesting features of flares. For this review I highlight some important results that illustrate the utility of attacking the problem of solar flares with a combination of high quality observations, and state-of-the-art flare loop models, demonstrating: (1) how models help to interpret flare observations from IRIS, (2) how those observations show us where we are missing physics from our models, and (3) how the ever increasing quality of solar observations drives model improvements. Here in Paper 1 of this two part review I provide an overview of modern flare loop models, and of electron-beam driven mass flows during solar flares.