论文标题
AWT-使用聚集的小波树聚类气象时间序列
AWT -- Clustering Meteorological Time Series Using an Aggregated Wavelet Tree
论文作者
论文摘要
聚类和异常检测对于气象测量起着重要作用。我们提供了AWT算法,这是一种用于时间序列数据的聚类算法,在聚类过程中也执行隐式离群值检测。 AWT整合了几种著名的K-均值聚类算法的想法。它根据用户定义的阈值参数自动选择簇数,并且可用于异质气象输入数据以及超过可用内存大小的数据集。我们将AWT应用于维也纳市的每小时分辨率的人群来源的2-M温度数据,以检测异常值,并调查最终簇是否显示出与城市土地利用特征的一般相似之处和相似之处。结果表明,AWT可以通过AWT开放新的可能的应用领域,特别是在城市气候和城市天气的迅速发展的领域中,都可以使用新的可能的应用领域,这表明了异常检测和隐性映射到土地使用特征。
Both clustering and outlier detection play an important role for meteorological measurements. We present the AWT algorithm, a clustering algorithm for time series data that also performs implicit outlier detection during the clustering. AWT integrates ideas of several well-known K-Means clustering algorithms. It chooses the number of clusters automatically based on a user-defined threshold parameter, and it can be used for heterogeneous meteorological input data as well as for data sets that exceed the available memory size. We apply AWT to crowd sourced 2-m temperature data with an hourly resolution from the city of Vienna to detect outliers and to investigate if the final clusters show general similarities and similarities with urban land-use characteristics. It is shown that both the outlier detection and the implicit mapping to land-use characteristic is possible with AWT which opens new possible fields of application, specifically in the rapidly evolving field of urban climate and urban weather.