论文标题

在代数约束的部分微分方程中,并应用于OSEEN方程

Hypocoercivity in algebraically constrained partial differential equations with application to Oseen equations

论文作者

Achleitner, Franz, Arnold, Anton, Mehrmann, Volker

论文摘要

使用低调的概念分析了2D圆环流体流的OSEEN方程的解决方案的长期行为。所考虑的模型是各向同性OSEEN方程,其中粘度在各个方向上均匀起作用,并且具有不同粘度方向的各向异性Oseen-type方程。确定了(如果存在的话)的低调指数,并且显示出类似于普通微分方程的有限维度和差分 - 代数方程的有限维度,则它表征了其衰减行为。

The long-time behavior of solutions to different versions of Oseen equations of fluid flow on the 2D torus is analyzed using the concept of hypocoercivity. The considered models are isotropic Oseen equations where the viscosity acts uniformly in all directions and anisotropic Oseen-type equations with different viscosity directions. The hypocoercivity index is determined (if it exists) and it is shown that similar to the finite dimensional case of ordinary differential equations and differential-algebraic equations it characterizes its decay behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源