论文标题

Cropcat:用于平滑EEG信号的特征分布的数据增强

CropCat: Data Augmentation for Smoothing the Feature Distribution of EEG Signals

论文作者

Kim, Sung-Jin, Lee, Dae-Hyeok, Choi, Yeon-Woo

论文摘要

大脑计算机界面(BCI)是人类和计算机之间反映人类意图的通信系统,而无需使用物理控制设备。由于深度学习在从数据中提取特征方面是有力的,因此在BCI领域中,通过应用深度学习来解码脑电图的研究。但是,深度学习在BCI领域的应用存在缺乏数据和过度自信的问题。为了解决这些问题,我们提出了一种新型的数据增强方法Cropcat。 Cropcat由两个版本组成,分别是cropcat-wastial和cropcat-stormal。我们通过在裁剪数据后加入裁剪的数据来设计我们的方法,该数据在空间和时间轴上具有不同的标签。此外,我们根据裁剪长度的比率调整了标签。结果,我们提出的方法的生成数据有助于将模棱两可的决策边界修改为由于缺乏数据而引起的明显。由于提出的方法的有效性,与未应用所提出的方法相比,在两个运动图像公共数据集中,四个EEG信号解码模型的性能得到了改善。因此,我们证明了Cropcat生成的数据在训练模型时平滑EEG信号的特征分布。

Brain-computer interface (BCI) is a communication system between humans and computers reflecting human intention without using a physical control device. Since deep learning is robust in extracting features from data, research on decoding electroencephalograms by applying deep learning has progressed in the BCI domain. However, the application of deep learning in the BCI domain has issues with a lack of data and overconfidence. To solve these issues, we proposed a novel data augmentation method, CropCat. CropCat consists of two versions, CropCat-spatial and CropCat-temporal. We designed our method by concatenating the cropped data after cropping the data, which have different labels in spatial and temporal axes. In addition, we adjusted the label based on the ratio of cropped length. As a result, the generated data from our proposed method assisted in revising the ambiguous decision boundary into apparent caused by a lack of data. Due to the effectiveness of the proposed method, the performance of the four EEG signal decoding models is improved in two motor imagery public datasets compared to when the proposed method is not applied. Hence, we demonstrate that generated data by CropCat smooths the feature distribution of EEG signals when training the model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源