论文标题

在固定数字字段中具有多个指数的扭曲thue方程

Twisted Thue equations with multiple exponents in fixed number fields

论文作者

Hilgart, Tobias, Ziegler, Volker

论文摘要

令$ k $为$ d \ geq 3 $的数字字段,并修复$ s $乘法性地倍增独立的代数整数$γ_1,\ dots,γ_s\ in k^*$,可以满足某些技术要求,可以将其简化为$ \ \ \ \ m athbb {q} $ - {q} $ - 线性的独立性,允许使用Schanuel的独立,允许使用Schanuel的命令。然后,我们考虑扭曲的thue方程\ [ \ left | n_ {k/\ mathbb {q}}} \ left(x-γ_1^{t_1} \cdotsγ_S^{t_s} y \ right)\ right | = 1,\],并证明它只有许多解决方案$(x,y,(t_1,\ dots,t_s))$,带有$ xy \ neq 0 $和$ \ mathbb {q} \ left(γ_1^{γ_1^{t_1} \ cdotsγ_Sγ_Sγ_Sγ_Sγ_S^{

Let $K$ be a number field of degree $d\geq 3$ and fix $s$ multiplicatively independent algebraic integers $γ_1, \dots, γ_s \in K^*$ that fulfil some technical requirements, which can be vastly simplified to $\mathbb{Q}$-linearly independence, given Schanuel's conjecture. We then consider the twisted Thue equation \[ \left|N_{K/\mathbb{Q}}\left(X-γ_1^{t_1}\cdotsγ_s^{t_s}Y\right)\right| = 1, \] and prove that it has only finitely many solutions $(x,y, (t_1, \dots, t_s) )$ with $xy \neq 0$ and $\mathbb{Q}\left( γ_1^{t_1}\cdots γ_s^{t_s} \right) = K$, all of which are effectively computable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源