论文标题
通用全球合并操作的正规化最佳运输层
Regularized Optimal Transport Layers for Generalized Global Pooling Operations
论文作者
论文摘要
全球池是许多机器学习模型和任务中最重要的操作之一,该操作适用于信息融合和结构化数据(例如集合和图形)表示。但是,如果没有坚实的数学基本原理,其实际实现通常取决于经验机制,从而导致次优最佳,甚至不令人满意的性能。在这项工作中,我们通过最佳运输镜头开发了一个新颖而广义的全球合并框架。提出的框架可以从期望最大化的角度来解释。从本质上讲,它旨在学习跨样本指数和特征维度的最佳运输,从而使相应的汇总操作最大化输入数据的条件期望。我们证明,大多数现有的合并方法等同于解决不同专业的正则最佳运输(ROT)问题,并且可以通过层次解决多个腐烂问题来实现更复杂的池操作。使腐烂问题的参数可学习,我们开发了一个正规化的最佳运输池(ROTP)层的家族。我们将ROTP层作为一种新型的深层隐式层实现。他们的模型体系结构对应于不同的优化算法。我们在几个代表性的设置级的机器学习方案中测试了ROTP层,包括多实施学习(MIL),图形分类,图形集表示和图像分类。实验结果表明,应用我们的ROTP层可以减少全局合并的设计和选择的难度 - 我们的ROTP层可以模仿某些现有的全局池化方法,或者导致一些新的池层更好地拟合数据。该代码可在\ url {https://github.com/sds-lab/rot-pooling}中获得。
Global pooling is one of the most significant operations in many machine learning models and tasks, which works for information fusion and structured data (like sets and graphs) representation. However, without solid mathematical fundamentals, its practical implementations often depend on empirical mechanisms and thus lead to sub-optimal, even unsatisfactory performance. In this work, we develop a novel and generalized global pooling framework through the lens of optimal transport. The proposed framework is interpretable from the perspective of expectation-maximization. Essentially, it aims at learning an optimal transport across sample indices and feature dimensions, making the corresponding pooling operation maximize the conditional expectation of input data. We demonstrate that most existing pooling methods are equivalent to solving a regularized optimal transport (ROT) problem with different specializations, and more sophisticated pooling operations can be implemented by hierarchically solving multiple ROT problems. Making the parameters of the ROT problem learnable, we develop a family of regularized optimal transport pooling (ROTP) layers. We implement the ROTP layers as a new kind of deep implicit layer. Their model architectures correspond to different optimization algorithms. We test our ROTP layers in several representative set-level machine learning scenarios, including multi-instance learning (MIL), graph classification, graph set representation, and image classification. Experimental results show that applying our ROTP layers can reduce the difficulty of the design and selection of global pooling -- our ROTP layers may either imitate some existing global pooling methods or lead to some new pooling layers fitting data better. The code is available at \url{https://github.com/SDS-Lab/ROT-Pooling}.