论文标题

结构指导的图像完成图像级和对象级语义歧视器

Structure-Guided Image Completion with Image-level and Object-level Semantic Discriminators

论文作者

Zheng, Haitian, Lin, Zhe, Lu, Jingwan, Cohen, Scott, Shechtman, Eli, Barnes, Connelly, Zhang, Jianming, Liu, Qing, Zhou, Yuqian, Amirghodsi, Sohrab, Luo, Jiebo

论文摘要

结构指导的图像完成旨在根据用户的输入指南图对图像的局部区域进行分配。尽管这样的任务可以用于交互式编辑的许多实际应用,但现有的方法通常难以在复杂的自然场景中幻觉现实的对象实例。这种限制部分是由于孔区域内缺乏语义级别的约束以及缺乏实施现实对象产生的机制。在这项工作中,我们提出了一个学习范式,该范式由语义歧视者和对象级别的歧视因子组成,以改善复杂的语义和对象的产生。具体而言,语义歧视者利用预处理的视觉特征来改善生成的视觉概念的现实主义。此外,对象级别的歧视者将一致的实例作为实施单个对象的现实主义的输入。我们提出的计划可显着提高生成质量,并在各种任务上取得最先进的结果,包括分割引导的完成,边缘指导的操作以及Ploce2数据集上的全面指导操作。此外,我们训练有素的模型是灵活的,可以支持多个编辑用例,例如对象插入,替换,拆卸和标准登录。特别是,我们训练有素的模型与新型的自动图像完成管道相结合,可以实现标准介绍任务的最新结果。

Structure-guided image completion aims to inpaint a local region of an image according to an input guidance map from users. While such a task enables many practical applications for interactive editing, existing methods often struggle to hallucinate realistic object instances in complex natural scenes. Such a limitation is partially due to the lack of semantic-level constraints inside the hole region as well as the lack of a mechanism to enforce realistic object generation. In this work, we propose a learning paradigm that consists of semantic discriminators and object-level discriminators for improving the generation of complex semantics and objects. Specifically, the semantic discriminators leverage pretrained visual features to improve the realism of the generated visual concepts. Moreover, the object-level discriminators take aligned instances as inputs to enforce the realism of individual objects. Our proposed scheme significantly improves the generation quality and achieves state-of-the-art results on various tasks, including segmentation-guided completion, edge-guided manipulation and panoptically-guided manipulation on Places2 datasets. Furthermore, our trained model is flexible and can support multiple editing use cases, such as object insertion, replacement, removal and standard inpainting. In particular, our trained model combined with a novel automatic image completion pipeline achieves state-of-the-art results on the standard inpainting task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源