论文标题
半代数表面的全球Bi-Lipschitz分类
Global bi-Lipschitz classification of semi-algebraic surfaces
论文作者
论文摘要
我们将半代数表面分类为$ \ mathbb {r}^n $,与bi-lipschitz同构相对于内部距离,隔离的奇异性与Bi-Lipschitz同构。特别是,我们获得了NASH表面和复杂代数曲线的完整分类。我们还以有限的总曲率来解决最小表面。
We classify semi-algebraic surfaces in $\mathbb{R}^n$ with isolated singularities up to bi-Lipschitz homeomorphisms with respect to the inner distance. In particular, we obtain complete classifications for the Nash surfaces and the complex algebraic curves. We also address the minimal surfaces with finite total curvature.