论文标题

非平衡的全计数统计数据和对称分解的纠缠

Nonequilibrium Full Counting Statistics and Symmetry-Resolved Entanglement from Space-Time Duality

论文作者

Bertini, Bruno, Calabrese, Pasquale, Collura, Mario, Klobas, Katja, Rylands, Colin

论文摘要

由于其概率性质,量子力学中的测量过程会产生可能的结果。该分布(或其傅立叶变换称为完整计数统计(FCS))包含的信息要多得多,而不是说可观察到的可观察到的平均值,有时访问它是获取有关系统相关信息的唯一方法。实际上,FCS是一个更一般的可观察到的限制(带电的时刻)的极限,它表征了在存在全球对称性的情况下,在不同对称部门中量子纠缠的方式。在这里,我们考虑了FCS的演变以及在全球量子淬火后截断到有限区域的U(1)电荷的电荷矩的演变。对于大尺度,这些数量采用简单的大型驱动形式,显示了两个不同的方案作为时间的功能:虽然比局部平衡状态设定的固定值的区域大的时间大得多,而在区域大小中,它们显示出非平凡的依赖时间。我们表明,只要初始状态也是u(1)对称,可以通过时空双重性来确定FCS的领先顺序和非平衡状态中带电的矩。也就是说,它与交换时间和空间角色的系统中的固定值一致。我们使用此观察结果来找到FC的一些一般特性和带电的矩不平衡,并在可相互作用的集成模型中得出这些数量的精确表达。我们在规则54量子细胞自动机和XXZ spin-1/2链中的精确数字中测试了此表达式。

Due to its probabilistic nature, a measurement process in quantum mechanics produces a distribution of possible outcomes. This distribution - or its Fourier transform known as full counting statistics (FCS) - contains much more information than say the mean value of the measured observable and accessing it is sometimes the only way to obtain relevant information about the system. In fact, the FCS is the limit of an even more general family of observables - the charged moments - that characterise how quantum entanglement is split in different symmetry sectors in the presence of a global symmetry. Here we consider the evolution of the FCS and of the charged moments of a U(1) charge truncated to a finite region after a global quantum quench. For large scales these quantities take a simple large-deviation form, showing two different regimes as functions of time: while for times much larger than the size of the region they approach a stationary value set by the local equilibrium state, for times shorter than region size they show a non-trivial dependence on time. We show that, whenever the initial state is also U(1) symmetric, the leading order in time of FCS and charged moments in the out-of-equilibrium regime can be determined by means of a space-time duality. Namely, it coincides with the stationary value in the system where the roles of time and space are exchanged. We use this observation to find some general properties of FCS and charged moments out-of-equilibrium, and to derive an exact expression for these quantities in interacting integrable models. We test this expression against exact results in the Rule 54 quantum cellular automaton and exact numerics in the XXZ spin-1/2 chain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源