论文标题
三轴轨道模型I的准确性和精度:SMBH质量,恒星质量和深色halo
Accuracy and precision of triaxial orbit models I: SMBH mass, stellar mass and dark-matter halo
论文作者
论文摘要
我们通过拟合了与超级大质量黑洞(SMBH)的巨大早期型星系(SMBH)的二维模拟观察,研究了三轴动力学轨道模型的准确性和精度。我们表明,对于几种不同的测试方向,前所未有的准确性为5-10%,我们可以重现三轴N身体合并的正确黑洞质量,出色的质量与光比和总封闭质量(在半光半径内)。我们的动态模型使用整个非参数速度速度分布(LOSVD),而不是参数LOSVD或速度矩作为约束。我们的结果强烈表明,最先进的积分场预测的运动学数据仅包含相对于质量和各向异性恢复的少量变性。 Moroever,这也证明了Schwarzschild方法的强度。通过结合几个进步,我们通过新开发的建模机械实现了可靠的高恢复精度和精确度:(i)我们的新的半参数depRoction代码探针去性化分离性,并允许限制三方星系的视角; (ii)我们的新轨道建模代码SMART使用5-DIM轨道起始空间,以代表星系中心的近循环轨道; (iii)我们使用广义信息标准AICP来优化平滑度并比较不同的质量模型,以避免在$χ^2 $基于$χ^2 $的模型中发生的偏差,具有不同的模型灵活性。
We investigate the accuracy and precision of triaxial dynamical orbit models by fitting two dimensional mock observations of a realistic N-body merger simulation resembling a massive early-type galaxy with a supermassive black hole (SMBH). We show that we can reproduce the triaxial N-body merger remnant's correct black hole mass, stellar mass-to-light ratio and total enclosed mass (inside the half-light radius) for several different tested orientations with an unprecedented accuracy of 5-10%. Our dynamical models use the entire non-parametric line-of-sight velocity distribution (LOSVD) rather than parametric LOSVDs or velocity moments as constraints. Our results strongly suggest that state-of-the-art integral-field projected kinematic data contain only minor degeneracies with respect to the mass and anisotropy recovery. Moroever, this also demonstrates the strength of the Schwarzschild method in general. We achieve the proven high recovery accuracy and precision with our newly developed modeling machinery by combining several advancements: (i) our new semi-parametric deprojection code probes degeneracies and allows to constrain the viewing angles of a triaxial galaxy; (ii) our new orbit modeling code SMART uses a 5-dim orbital starting space to representatively sample in particular near-Keplerian orbits in galaxy centers; (iii) we use a generalised information criterion AICp to optimise the smoothing and to compare different mass models to avoid biases that occur in $χ^2$-based models with varying model flexibilities.