论文标题
通过机器学习,快速确定丽莎对极高比率的灵敏度灵感
Rapid determination of LISA sensitivity to extreme mass ratio inspirals with machine learning
论文作者
论文摘要
恒星质量紧凑物体的引力波观测到巨大的黑洞(MBH),极端质量比灵感(EMRIS),启用对MBH质量和自旋等参数的精确测量。预计激光干涉仪空间天线将检测到足够的EMRIS来探测潜在的源群体,测试MBHS及其环境的形成和演变理论。人口研究受到在EMRI参数空间中各种选择效应的选择,如果不被征服,则会偏向推断。可以纠正这种偏差,但是评估许多EMRI信号的可检测性在计算上是昂贵的。我们通过(i)构建能够从其参数中预测EMRI的信噪比的快速而准确的神经网络插值器来减轻这一成本,(ii)通过学习选择功能的神经网络进一步加速可检测性估计,从而利用我们的第一个神经网络来生成数据。最终的框架迅速估算了选择函数,从而使人口推理分析中的EMRI可检测性进行了全面处理。我们将我们的方法应用于以天体物理动机的EMRI人群模型,证明了潜在的选择偏见,随后对其进行了纠正。考虑到选择效果,我们预测LISA将MBH质量函数坡度的精度为8.8%,CO质量函数斜率为4.6%,MBH旋转幅度分布的宽度为10%,事件速率为10%,而EMRIS的精度为12%。
Gravitational wave observations of the inspiral of stellar-mass compact objects into massive black holes (MBHs), extreme mass ratio inspirals (EMRIs), enable precision measurements of parameters such as the MBH mass and spin. The Laser Interferometer Space Antenna is expected to detect sufficient EMRIs to probe the underlying source population, testing theories of the formation and evolution of MBHs and their environments. Population studies are subject to selection effects that vary across the EMRI parameter space, which bias inference results if unaccounted for. This bias can be corrected, but evaluating the detectability of many EMRI signals is computationally expensive. We mitigate this cost by (i) constructing a rapid and accurate neural network interpolator capable of predicting the signal-to-noise ratio of an EMRI from its parameters, and (ii) further accelerating detectability estimation with a neural network that learns the selection function, leveraging our first neural network for data generation. The resulting framework rapidly estimates the selection function, enabling a full treatment of EMRI detectability in population inference analyses. We apply our method to an astrophysically motivated EMRI population model, demonstrating the potential selection biases and subsequently correcting for them. Accounting for selection effects, we predict that LISA will measure the MBH mass function slope to a precision of 8.8%, the CO mass function slope to a precision of 4.6%, the width of the MBH spin magnitude distribution to a precision of 10% and the event rate to a precision of 12% with EMRIs at redshifts below z=6.