论文标题
溶解涡流的量子统计力学
Quantum Statistical Mechanics of Dissolving Vortices
论文作者
论文摘要
使用Beltrami Laplacian的光谱数据在$ n $ -N $ -Vortex Moduli Space $ \ Mathbb {Cp}^n $上使用缩放的Fubini-fubini-study Metric上的量子数据明确计算了用于溶解Abelian Higgs涡流的量子分区函数。从分区函数中,涡流气体的压力得出。有三种渐近方案 - 高,中级和低温。从中间到低温的相位交叉由贝塞尔函数建模。在低温制度中,自由能并不广泛,但与$ n^2 $成正比。
The quantum partition function for dissolving Abelian Higgs vortices is calculated explicitly, using spectral data for the Beltrami Laplacian on the $N$-vortex moduli space $\mathbb{CP}^N$ with a scaled Fubini--Study metric. From the partition function, the pressure of the vortex gas is derived. There are three asymptotic regimes -- High, Intermediate and Low Temperature. The phase crossover from Intermediate to Low Temperature is modelled by a Bessel function. In the Low Temperature regime the free energy is not extensive but is proportional to $N^2$.