论文标题

变压器层的神经颂歌解释

A Neural ODE Interpretation of Transformer Layers

论文作者

Zhong, Yaofeng Desmond, Zhang, Tongtao, Chakraborty, Amit, Dey, Biswadip

论文摘要

变压器层使用多头注意力的交替模式和多层感知器(MLP)层,为各种机器学习问题提供了有效的工具。由于变压器层使用残差连接来避免消失梯度的问题,因此可以将它们视为微分方程的数值集成。在这个扩展的摘要中,我们基于这种联系,并提出了变压器层的内部体系结构的修改。提出的模型将多头注意的子层和MLP互相平行。我们的实验表明,这种简单的修改可改善多个任务中变压器网络的性能。此外,对于图像分类任务,我们表明,使用神经ODE求解器与复杂的集成方案进一步提高了性能。

Transformer layers, which use an alternating pattern of multi-head attention and multi-layer perceptron (MLP) layers, provide an effective tool for a variety of machine learning problems. As the transformer layers use residual connections to avoid the problem of vanishing gradients, they can be viewed as the numerical integration of a differential equation. In this extended abstract, we build upon this connection and propose a modification of the internal architecture of a transformer layer. The proposed model places the multi-head attention sublayer and the MLP sublayer parallel to each other. Our experiments show that this simple modification improves the performance of transformer networks in multiple tasks. Moreover, for the image classification task, we show that using neural ODE solvers with a sophisticated integration scheme further improves performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源