论文标题
生物三相重归于
Biorthogonal Renormalization
论文作者
论文摘要
生物三相形式主义将常规量子力学扩展到非热境领域。但是,已经指出,生物三相的内部产物随特征向量的缩放而变化,这是一种歧义,其物理意义仍在争论中。在这里,我们重新审视了这个问题,并争论何时进行标准化是物理上重要的。我们说明了哪些设置数量(例如期望值和过渡概率)取决于特征向量的缩放,在这种情况下,在这种设置中,生物表达形式主义仍然明确。为了解决明显的缩放歧义,我们引入了一个独立于量规选择的内部产品,并表明其相应的数学结构与量子力学一致。使用这种形式主义,我们确定了与希尔伯特空间表示形式的物理性有关的更深层次的问题,我们使用位置基础说明了这一点。除了增加对许多物理结果所依赖的数学基础的理解外,我们的发现还为非热汉密尔顿人所描述的系统之间进行一致比较铺平了道路。
The biorthogonal formalism extends conventional quantum mechanics to the non-Hermitian realm. It has, however, been pointed out that the biorthogonal inner product changes with the scaling of the eigenvectors, an ambiguity whose physical significance is still being debated. Here, we revisit this issue and argue when this choice of normalization is of physical importance. We illustrate in which settings quantities such as expectation values and transition probabilities depend on the scaling of eigenvectors, and in which settings the biorthogonal formalism remains unambiguous. To resolve the apparent scaling ambiguity, we introduce an inner product independent of the gauge choice of basis and show that its corresponding mathematical structure is consistent with quantum mechanics. Using this formalism, we identify a deeper problem relating to the physicality of Hilbert space representations, which we illustrate using the position basis. Apart from increasing the understanding of the mathematical foundations upon which many physical results rely, our findings also pave the way towards consistent comparisons between systems described by non-Hermitian Hamiltonians.