论文标题

非稳态学习的衰减的实例条件时间表

Instance-Conditional Timescales of Decay for Non-Stationary Learning

论文作者

Jain, Nishant, Shenoy, Pradeep

论文摘要

在实用的机器学习系统中,缓慢的概念漂移是一个无处不在但又研究不足的问题。在这种情况下,尽管最近的数据更像是未来的数据,但天真的优先考虑最近的实例有可能从过去中丢失有价值的信息的风险。我们提出了一种优化驱动的方法,以平衡实例对大型培训窗口的重要性。首先,我们使用多个衰减时标的混合物对实例相关性进行建模,从而使我们能够捕获丰富的时间趋势。其次,我们学习了一个辅助得分手模型,该模型恢复了实例本身的适当混合物。最后,我们提出了一个学习得分手的嵌套优化目标,通过该目标,它可以最大程度地提高学习模型的前向转移。与其他健壮的学习基线相比,在9年期间,在9年内的3900万照片的大型现实数据集中进行了实验。我们将收益复制在两个现实世界数据集的集合中,以进行非平稳学习,并将我们的工作扩展到连续的学习设置,在这种设置中,我们也通过很大的利润来击败SOTA方法。

Slow concept drift is a ubiquitous, yet under-studied problem in practical machine learning systems. In such settings, although recent data is more indicative of future data, naively prioritizing recent instances runs the risk of losing valuable information from the past. We propose an optimization-driven approach towards balancing instance importance over large training windows. First, we model instance relevance using a mixture of multiple timescales of decay, allowing us to capture rich temporal trends. Second, we learn an auxiliary scorer model that recovers the appropriate mixture of timescales as a function of the instance itself. Finally, we propose a nested optimization objective for learning the scorer, by which it maximizes forward transfer for the learned model. Experiments on a large real-world dataset of 39M photos over a 9 year period show upto 15% relative gains in accuracy compared to other robust learning baselines. We replicate our gains on two collections of real-world datasets for non-stationary learning, and extend our work to continual learning settings where, too, we beat SOTA methods by large margins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源