论文标题

图形神经网络上的星系:具有深层生成模型的强大合成星系目录

Galaxies on graph neural networks: towards robust synthetic galaxy catalogs with deep generative models

论文作者

Jagvaral, Yesukhei, Lanusse, Francois, Singh, Sukhdeep, Mandelbaum, Rachel, Ravanbakhsh, Siamak, Campbell, Duncan

论文摘要

未来的天文成像调查将对宇宙学参数(例如暗能量)提供精确的约束。但是,用于测试和验证分析方法的这些调查的合成数据产生的计算成本很高。特别是,在足够大容量的情况下生成模拟的星系目录和高分辨率将很快在计算上变得无法达到。在本文中,我们通过深层生成模型解决了这个问题,以创建可靠的模拟星系目录,该目录可用于测试和开发未来弱透镜调查的分析管道。我们通过将每个星系放在图节点上,然后在每个重力绑定的系统中连接图形来构建模型。我们对宇宙学模拟进行训练,该模拟具有逼真的星系群,以捕获星系的2D和3D方向。来自模型的样品与模拟中的样品具有可比的统计特性。据我们所知,这是天体/宇宙学环境中图形生成模型的第一个实例。

The future astronomical imaging surveys are set to provide precise constraints on cosmological parameters, such as dark energy. However, production of synthetic data for these surveys, to test and validate analysis methods, suffers from a very high computational cost. In particular, generating mock galaxy catalogs at sufficiently large volume and high resolution will soon become computationally unreachable. In this paper, we address this problem with a Deep Generative Model to create robust mock galaxy catalogs that may be used to test and develop the analysis pipelines of future weak lensing surveys. We build our model on a custom built Graph Convolutional Networks, by placing each galaxy on a graph node and then connecting the graphs within each gravitationally bound system. We train our model on a cosmological simulation with realistic galaxy populations to capture the 2D and 3D orientations of galaxies. The samples from the model exhibit comparable statistical properties to those in the simulations. To the best of our knowledge, this is the first instance of a generative model on graphs in an astrophysical/cosmological context.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源