论文标题

Pystcal:通过辅助提示进行对比的亲和力学习,以获取广义新颖类别发现

PromptCAL: Contrastive Affinity Learning via Auxiliary Prompts for Generalized Novel Category Discovery

论文作者

Zhang, Sheng, Khan, Salman, Shen, Zhiqiang, Naseer, Muzammal, Chen, Guangyi, Khan, Fahad

论文摘要

尽管现有的半监督学习模型通过未经宣传的分布数据在学习方面取得了显着成功,但由于其封闭式假设,它们大多未能从新颖的语义类别中学习的未标记的数据学习。在这项工作中,我们针对了务实但探索不足的通用小型类别发现(GNCD)设置。 GNCD设置旨在通过利用部分标记已知类别的信息来分类来自已知和新颖类的未标记培训数据。我们提出了一种两阶段的对比亲和力学习方法,并使用辅助视觉提示(称为Pystercal)来解决这个具有挑战性的问题。我们的方法发现了可靠的成对样本亲和力,以学习班级和视觉提示的已知和新颖类的更好的语义聚类。首先,我们提出了一个歧视性迅速正规化损失,以增强对精致亲和力关系的迅速适应的预训练的视力变压器的语义歧视性。Besides,我们建议基于我们的迭代性半手不足的亲和力图表来校准语义表示,以校准语义表述,以使我们的半固定性亲和力生成方法为语义上的语言增强式增强的手术性增强方法。广泛的实验评估表明,即使有限的注释,我们的Pystcal方法在发现新的类别方面也更有效,并且超过了通用和细粒基准的最新最新方法(例如,CUB-200的近11%,Imagenet-100增长了近11%,在Imagenet-100上获得了9%)。我们的代码可在https://github.com/sheng-eatamath/promptcal上找到。

Although existing semi-supervised learning models achieve remarkable success in learning with unannotated in-distribution data, they mostly fail to learn on unlabeled data sampled from novel semantic classes due to their closed-set assumption. In this work, we target a pragmatic but under-explored Generalized Novel Category Discovery (GNCD) setting. The GNCD setting aims to categorize unlabeled training data coming from known and novel classes by leveraging the information of partially labeled known classes. We propose a two-stage Contrastive Affinity Learning method with auxiliary visual Prompts, dubbed PromptCAL, to address this challenging problem. Our approach discovers reliable pairwise sample affinities to learn better semantic clustering of both known and novel classes for the class token and visual prompts. First, we propose a discriminative prompt regularization loss to reinforce semantic discriminativeness of prompt-adapted pre-trained vision transformer for refined affinity relationships.Besides, we propose contrastive affinity learning to calibrate semantic representations based on our iterative semi-supervised affinity graph generation method for semantically-enhanced supervision. Extensive experimental evaluation demonstrates that our PromptCAL method is more effective in discovering novel classes even with limited annotations and surpasses the current state-of-the-art on generic and fine-grained benchmarks (e.g., with nearly 11% gain on CUB-200, and 9% on ImageNet-100) on overall accuracy. Our code is available at https://github.com/sheng-eatamath/PromptCAL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源