论文标题
Yolocurvseg:您仅标记一个用于容器式曲线结构分割的嘈杂骨架
YoloCurvSeg: You Only Label One Noisy Skeleton for Vessel-style Curvilinear Structure Segmentation
论文作者
论文摘要
已经提出了弱监督的学习(WSL),以减轻数据注释成本和模型绩效之间的冲突,通过采用稀疏粒度(即点,盒子,涂鸦,涂鸦)监督,并显示出令人鼓舞的性能,尤其是在图像段领域。但是,由于有限的监督,这仍然是一项非常具有挑战性的任务,尤其是当只有少量标记样品可用时。此外,几乎所有现有的WSL分割方法均设计用于与曲线结构(例如血管和神经)非常不同的星形结构。在本文中,我们提出了一个新颖的注释分段框架,用于曲线结构,名为Yolocurvseg。 Yolocurvseg的一个非常重要的组成部分是图像合成。具体而言,背景生成器提供的图像背景通过介入的扩张骨骼与真实分布非常匹配。然后将提取的背景与基于空间定植算法的前景发生器以及通过多层贴片对比度学习合成器生成的随机模拟曲线结合。这样,获得了带有图像和曲线分割标签的合成数据集,仅为一个或几个嘈杂的骨骼注释。最后,对细分器进行了使用生成的数据集培训,并且可能是未标记的数据集。拟议的Yolocurvseg在四个公开可用的数据集(Octa500,玉米,驱动器和Chascedb1)上进行了评估,结果表明,Yolocurvseg的表现优于最先进的WSL分割方法,该方法的大幅度较大。只有一个嘈杂的骨骼注释(分别为0.14 \%,0.03 \%,1.40 \%和0.65%的完整注释),Yolocurvseg可以在每个数据集中实现超过97%以上的全面监督性能。代码和数据集将在https://github.com/llmir/yolocurvseg上发布。
Weakly-supervised learning (WSL) has been proposed to alleviate the conflict between data annotation cost and model performance through employing sparsely-grained (i.e., point-, box-, scribble-wise) supervision and has shown promising performance, particularly in the image segmentation field. However, it is still a very challenging task due to the limited supervision, especially when only a small number of labeled samples are available. Additionally, almost all existing WSL segmentation methods are designed for star-convex structures which are very different from curvilinear structures such as vessels and nerves. In this paper, we propose a novel sparsely annotated segmentation framework for curvilinear structures, named YoloCurvSeg. A very essential component of YoloCurvSeg is image synthesis. Specifically, a background generator delivers image backgrounds that closely match the real distributions through inpainting dilated skeletons. The extracted backgrounds are then combined with randomly emulated curves generated by a Space Colonization Algorithm-based foreground generator and through a multilayer patch-wise contrastive learning synthesizer. In this way, a synthetic dataset with both images and curve segmentation labels is obtained, at the cost of only one or a few noisy skeleton annotations. Finally, a segmenter is trained with the generated dataset and possibly an unlabeled dataset. The proposed YoloCurvSeg is evaluated on four publicly available datasets (OCTA500, CORN, DRIVE and CHASEDB1) and the results show that YoloCurvSeg outperforms state-of-the-art WSL segmentation methods by large margins. With only one noisy skeleton annotation (respectively 0.14\%, 0.03\%, 1.40\%, and 0.65\% of the full annotation), YoloCurvSeg achieves more than 97\% of the fully-supervised performance on each dataset. Code and datasets will be released at https://github.com/llmir/YoloCurvSeg.