论文标题
带有α稳定先验的贝叶斯反转
Bayesian inversion with α-stable priors
论文作者
论文摘要
我们建议使用莱维α稳定的分布来为贝叶斯逆问题构建先验。该构建基于马尔可夫场,并具有稳定的分布增量。特殊情况包括库奇和高斯分布,分别具有稳定性指数α= 1和α= 2。我们的目标是表明这些先验为建模粗糙特征提供了丰富的先验。主要技术问题是α稳定的概率密度函数通常没有闭合形式的表达式,这限制了它们的适用性。出于实际目的,我们需要通过数值集成或串联扩展来近似概率密度函数。当前可用的近似方法要么太耗时,要么不在贝叶斯反转所需的稳定性和半径参数范围内发挥作用。为了解决这个问题,我们提出了一种新的混合近似方法,用于对称单变量和双变量α稳定分布,从实际的角度来看,它既可以快速评估又足够准确。然后,我们在α稳定的随机场初步的数值实现中使用近似方法。我们证明了构造的先验在选定的贝叶斯反问题上的适用性,这些问题包括反卷积问题,以及由椭圆形偏微分方程控制的函数的反转。我们还在一维反卷积问题中展示了层次α稳定的先验。在所有数值示例中,我们都采用最大基于A的估计。为此,我们为估计器利用有限的内存BFG及其有限变体。
We propose to use Lévy α-stable distributions for constructing priors for Bayesian inverse problems. The construction is based on Markov fields with stable-distributed increments. Special cases include the Cauchy and Gaussian distributions, with stability indices α = 1, and α = 2, respectively. Our target is to show that these priors provide a rich class of priors for modelling rough features. The main technical issue is that the α-stable probability density functions do not have closed-form expressions in general, and this limits their applicability. For practical purposes, we need to approximate probability density functions through numerical integration or series expansions. Current available approximation methods are either too time-consuming or do not function within the range of stability and radius arguments needed in Bayesian inversion. To address the issue, we propose a new hybrid approximation method for symmetric univariate and bivariate α-stable distributions, which is both fast to evaluate, and accurate enough from a practical viewpoint. Then we use approximation method in the numerical implementation of α-stable random field priors. We demonstrate the applicability of the constructed priors on selected Bayesian inverse problems which include the deconvolution problem, and the inversion of a function governed by an elliptic partial differential equation. We also demonstrate hierarchical α-stable priors in the one-dimensional deconvolution problem. We employ maximum-a-posterior-based estimation at all the numerical examples. To that end, we exploit the limited-memory BFGS and its bounded variant for the estimator.