论文标题
双重且三重扩展的MSRD代码
Doubly and triply extended MSRD codes
论文作者
论文摘要
在这项工作中,双线性线性化的芦苇 - 固体代码和三倍扩展的芦苇 - 固体代码是概括的。我们获得了一个一般结果,在该结果中,当通用度量达到单例界限的乘法扩展代码时,我们会表征。然后,我们使用此结果来获得几个双重扩展和三个延伸的最大总和率距离(MSRD)代码,其中包括双重扩展线性化的芦苇 - 固体代码和三重延伸的扩展的芦苇 - 固体代码 - 特定情况。总而言之,我们讨论这些代码何时是一重代码。
In this work, doubly extended linearized Reed--Solomon codes and triply extended Reed--Solomon codes are generalized. We obtain a general result in which we characterize when a multiply extended code for a general metric attains the Singleton bound. We then use this result to obtain several families of doubly extended and triply extended maximum sum-rank distance (MSRD) codes that include doubly extended linearized Reed--Solomon codes and triply extended Reed--Solomon codes as particular cases. To conclude, we discuss when these codes are one-weight codes.