论文标题
贝叶斯对随机线性扩展的部分订单的推断:12世纪的权力关系
Bayesian inference for partial orders from random linear extensions: power relations from 12th Century Royal Acta
论文作者
论文摘要
在英格兰,威尔士和诺曼底的第十一和十二世纪,皇家皇家是法律文件,在该文件中,以社会地位列出了证人。所有在场的主教都被列为一个小组。就我们的目的而言,每个证人列表是主教名称的有序排列,并具有已知日期或日期范围。随着时间的流逝,主教列出的变化可能反映其权威的变化。历史学家想检测和量化这些变化。没有理由假设在列表中限制主教的基本社会秩序是一个完整的顺序。因此,我们将不断发展的社会秩序建模为不断发展的部分有序集或{\ it poset}。 我们为这些数据构建一个隐藏的马尔可夫模型。隐藏的状态是不断发展的poset(不断发展的社会层次结构),并且发出的数据是尊重观察到订单时存在的poset的随机总订单(过时的列表)。这将概括用于等级数据(例如木瓜和plackett-luce)的现有模型。我们通过随机````排队跳'''过程来解释噪声。 POSET的随机过程的潜在可变先验略有一致。参数控制POSET深度,而Actor-Covariates为层次结构中的参与者的位置提供了信息。我们适合模型,估算POSET并找到证据表明状态随时间变化的证据。我们根据法院政治来解释我们的结果。基于存储键订单和顶点系列 - 并行订单的更简单模型被拒绝。我们将结果与Plackett-luce模型的时间序列扩展进行了比较。我们的软件已公开可用。
In the eleventh and twelfth centuries in England, Wales and Normandy, Royal Acta were legal documents in which witnesses were listed in order of social status. Any bishops present were listed as a group. For our purposes, each witness-list is an ordered permutation of bishop names with a known date or date-range. Changes over time in the order bishops are listed may reflect changes in their authority. Historians would like to detect and quantify these changes. There is no reason to assume that the underlying social order which constrains bishop-order within lists is a complete order. We therefore model the evolving social order as an evolving partial ordered set or {\it poset}. We construct a Hidden Markov Model for these data. The hidden state is an evolving poset (the evolving social hierarchy) and the emitted data are random total orders (dated lists) respecting the poset present at the time the order was observed. This generalises existing models for rank-order data such as Mallows and Plackett-Luce. We account for noise via a random ``queue-jumping'' process. Our latent-variable prior for the random process of posets is marginally consistent. A parameter controls poset depth and actor-covariates inform the position of actors in the hierarchy. We fit the model, estimate posets and find evidence for changes in status over time. We interpret our results in terms of court politics. Simpler models, based on Bucket Orders and vertex-series-parallel orders, are rejected. We compare our results with a time-series extension of the Plackett-Luce model. Our software is publicly available.