论文标题
电池寿命的可靠性研究:功能降解分析方法
Reliability Study of Battery Lives: A Functional Degradation Analysis Approach
论文作者
论文摘要
可再生能源对于打击气候变化至关重要,气候变化的第一步是可再生能源产生的电力的存储。锂离子电池是一种流行的存储单元。它们通过电荷释放周期的持续使用最终导致退化。这可以在绘制放电周期的绘制电压放电曲线(VDC)中可视化。电池降解的研究主要集中于通过一个标量测量汇总的每个VDC来建模降解。这种简化曲线会导致不准确的预测模型。在这里,我们通过建模和预测其完整的VDC来分析可充电锂离子电池从NASA数据集中的降解。借助纵向和功能数据分析的技术,我们为驻留在异质域上的功能响应提出了一种新的两步预测模型程序。我们首先使用功能回归模型预测VDC的形状和域终点。然后,我们将这些预测整合为进行降解分析。我们的方法具有完全功能性,可以合并使用信息,以曲线形式产生预测,从而在评估电池降解时具有灵活性。通过广泛的仿真研究和交叉验证的数据分析,我们的方法比直接使用汇总数据进行降解的现有方法表明了预测更好。
Renewable energy is critical for combating climate change, whose first step is the storage of electricity generated from renewable energy sources. Li-ion batteries are a popular kind of storage units. Their continuous usage through charge-discharge cycles eventually leads to degradation. This can be visualized in plotting voltage discharge curves (VDCs) over discharge cycles. Studies of battery degradation have mostly concentrated on modeling degradation through one scalar measurement summarizing each VDC. Such simplification of curves can lead to inaccurate predictive models. Here we analyze the degradation of rechargeable Li-ion batteries from a NASA data set through modeling and predicting their full VDCs. With techniques from longitudinal and functional data analysis, we propose a new two-step predictive modeling procedure for functional responses residing on heterogeneous domains. We first predict the shapes and domain end points of VDCs using functional regression models. Then we integrate these predictions to perform a degradation analysis. Our approach is fully functional, allows the incorporation of usage information, produces predictions in a curve form, and thus provides flexibility in the assessment of battery degradation. Through extensive simulation studies and cross-validated data analysis, our approach demonstrates better prediction than the existing approach of modeling degradation directly with aggregated data.