论文标题
除了圆形 - 弧形图 - 识别棒棒糖图和Medusa图
Beyond circular-arc graphs -- recognizing lollipop graphs and medusa graphs
论文作者
论文摘要
1992年,Biró,Hujter和Tuza介绍了每一个固定的连接图$ H $,即$ h $ graphs的类,定义为$ h $的某些细分的连接子图的相交图。最近,在各种计算问题(例如识别或同构测试)中,大量研究用于理解$ h $ graphs $ h $ $ h $。在这项工作中,我们介绍了这个研究主题,重点是识别问题。 Chaplick,Töpfer,Voborn \'ık和Zeman向每一个固定的树$ t $,一种多项式时间算法,识别$ t $ graphs。塔克(Tucker)显示出一种多项式时间算法,以识别$ k_3 $ -graphs(圆形 - arc图)。另一方面,乔布莱克在al。表明,如果$ h $包含两个不同的周期,则表明$ h $ graphs是$ np $ -hard。 这项工作的主要结果缩小了$ np $ - hard和$ h $ graphs识别的$ np $ - hard和$ p $ case之间的差距。首先,我们表明,当$ h $ h $包含两个不同的周期时,$ h $ graphs的识别为$ np $ -hard。另一方面,我们显示了识别$ l $ graphs的多项式时间算法,其中$ l $是包含周期和附加边缘的图($ l $ - graphs称为Lollipop图)。我们的工作留下了与循环和Lollipop不同的每个单车图$ m $ $ m $ graphs的识别问题。这项工作的其他结果阐明了保持开放的案例,如下所示。首先,如果我们将输入限制为包含特定孔的图(因此,识别$ m $ - 图可能是弦弦图最难的),则$ m $ graphs的识别($ m $是固定的独一图算法)承认多项式时间算法。其次,对Medusa图的识别是$ NP $ -COMPLETE,其定义为$ m $ graphs的结合,$ m $在所有unicyclic图上运行。
In 1992 Biró, Hujter and Tuza introduced, for every fixed connected graph $H$, the class of $H$-graphs, defined as the intersection graphs of connected subgraphs of some subdivision of $H$. Recently, quite a lot of research has been devoted to understanding the tractability border for various computational problems, such as recognition or isomorphism testing, in classes of $H$-graphs for different graphs $H$. In this work we undertake this research topic, focusing on the recognition problem. Chaplick, Töpfer, Voborn\'ık, and Zeman showed, for every fixed tree $T$, a polynomial-time algorithm recognizing $T$-graphs. Tucker showed a polynomial time algorithm recognizing $K_3$-graphs (circular-arc graphs). On the other hand, Chaplick at al. showed that recognition of $H$-graphs is $NP$-hard if $H$ contains two different cycles sharing an edge. The main two results of this work narrow the gap between the $NP$-hard and $P$ cases of $H$-graphs recognition. First, we show that recognition of $H$-graphs is $NP$-hard when $H$ contains two different cycles. On the other hand, we show a polynomial-time algorithm recognizing $L$-graphs, where $L$ is a graph containing a cycle and an edge attached to it ($L$-graphs are called lollipop graphs). Our work leaves open the recognition problems of $M$-graphs for every unicyclic graph $M$ different from a cycle and a lollipop. Other results of this work, which shed some light on the cases that remain open, are as follows. Firstly, the recognition of $M$-graphs, where $M$ is a fixed unicyclic graph, admits a polynomial time algorithm if we restrict the input to graphs containing particular holes (hence recognition of $M$-graphs is probably most difficult for chordal graphs). Secondly, the recognition of medusa graphs, which are defined as the union of $M$-graphs, where $M$ runs over all unicyclic graphs, is $NP$-complete.