论文标题

多任务预测 - 优化

Multi-Task Predict-then-Optimize

论文作者

Tang, Bo, Khalil, Elias B.

论文摘要

预测到优化的框架是在多种应用中产生的,在各种应用中,优化问题的未知成本系数首先是基于上下文特征预测的,然后用于解决该问题。在这项工作中,我们将预测的框架扩展到多任务设置:必须使用上下文功能来预测多个优化问题的成本系数,可能同时使用不同的可行区域。例如,在车辆派遣/路由应用程序中,必须使用诸如日期,流量和天气之类的功能来预测道路网络边缘上的旅行时间,以解决多个旅行销售人员问题,这些问题跨越了不同的目标位置以及多个S-T最短的路径问题,并具有不同的源头 - taget对。我们为这种设置提供了一组方法,其中最复杂的一项是多任务深度学习的进步,可以在改进学习任务之间共享信息,尤其是在小型数据制度中。我们的实验表明,多任务预测,然后优化的方法在不同任务之间的性能方面提供了良好的权衡,尤其是在较少的培训数据和更多任务的情况下。

The predict-then-optimize framework arises in a wide variety of applications where the unknown cost coefficients of an optimization problem are first predicted based on contextual features and then used to solve the problem. In this work, we extend the predict-then-optimize framework to a multi-task setting: contextual features must be used to predict cost coefficients of multiple optimization problems, possibly with different feasible regions, simultaneously. For instance, in a vehicle dispatch/routing application, features such as time-of-day, traffic, and weather must be used to predict travel times on the edges of a road network for multiple traveling salesperson problems that span different target locations and multiple s-t shortest path problems with different source-target pairs. We propose a set of methods for this setting, with the most sophisticated one drawing on advances in multi-task deep learning that enable information sharing between tasks for improved learning, particularly in the small-data regime. Our experiments demonstrate that multi-task predict-then-optimize methods provide good tradeoffs in performance among different tasks, particularly with less training data and more tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源