论文标题

$ u(\ mathfrak {sl} _2)$和约翰逊图的Terwilliger代数

The Clebsch--Gordan coefficients of $U(\mathfrak{sl}_2)$ and the Terwilliger algebras of Johnson graphs

论文作者

Huang, Hau-Wen

论文摘要

$ \ mathfrak的通用代数$ U(\ Mathfrak {sl} _2)$的$ \ Mathfrak {Sl} _2 $是$ \ Mathbb c $的Unital Associative代数。 [E,f] = h。 \ end {align*}元素$$λ= ef+fe+\ frac {h^2} {2} $$称为$ u(\ mathfrak {sl} _2)$的casimir元素。令$δ:u(\ mathfrak {sl} _2)\ to u(\ mathfrak {sl} _2)\ otimes u(\ mathfrak {sl} _2)$表示$ u(\ mathfrak {sl} _2)_通用的Hahn代数$ \ MATHCAL H $是$ a,b,c $生成的$ \ mathbb c $超过$ \ mathbb c $的一个联合联想代数,并且关系断言$ [a,b] = c $,并且每个\ begin {align*} [align*} [c,a]+2a^2 a]+2a^2+b,\ q quad nis in in Central Internal Internal Internal Internal Internal Internal Internal in Cintral Internal Internal Internal Intral {b,b,b,b,b,b,b,b,b,crign* $ \ MATHCAL H $。受$ U(\ Mathfrak {sl} _2)$的clebsch-Gordan系数的启发,我们发现了一个代数同构$ \ natural:\ mathcal h \ to u(\ mathfrak {\ mathfrak {sl} _2 _2 _2) &\mapsto & \frac{H\otimes 1-1\otimes H}{4}, \\ B &\mapsto & \frac{Δ(Λ)}{2}, \\ C &\mapsto & E\otimes F-F\otimes E. \end{eqnarray*} By pulling back via $\natural$ any $ u(\ mathfrak {sl} _2)\ otimes u(\ mathfrak {sl} _2)$ - 模块可以被视为$ \ Mathcal H $ -Module。对于任何整数$ n \ geq 0 $,都有一个唯一的$(n+1)$ - 尺寸不可约$ u(\ mathfrak {sl} _2)$ - 模块$ l_n $ to isomorphism to insomorphism。我们研究$ \ MATHCAL H $ -MODULE $ L_M \ otimes l_n $的分解,任何整数$ m,n \ geq 0 $。我们将这些结果与约翰逊图的Terwilliger代数联系起来。我们表达了约翰逊图的Terwilliger代数的尺寸。

The universal enveloping algebra $U(\mathfrak{sl}_2)$ of $\mathfrak{sl}_2$ is a unital associative algebra over $\mathbb C$ generated by $E,F,H$ subject to the relations \begin{align*} [H,E]=2E, \qquad [H,F]=-2F, \qquad [E,F]=H. \end{align*} The element $$ Λ=EF+FE+\frac{H^2}{2} $$ is called the Casimir element of $U(\mathfrak{sl}_2)$. Let $Δ:U(\mathfrak{sl}_2)\to U(\mathfrak{sl}_2)\otimes U(\mathfrak{sl}_2)$ denote the comultiplication of $U(\mathfrak{sl}_2)$. The universal Hahn algebra $\mathcal H$ is a unital associative algebra over $\mathbb C$ generated by $A,B,C$ and the relations assert that $[A,B]=C$ and each of \begin{align*} [C,A]+2A^2+B, \qquad [B,C]+4BA+2C \end{align*} is central in $\mathcal H$. Inspired by the Clebsch--Gordan coefficients of $U(\mathfrak{sl}_2)$, we discover an algebra homomorphism $\natural:\mathcal H\to U(\mathfrak{sl}_2)\otimes U(\mathfrak{sl}_2)$ that maps \begin{eqnarray*} A &\mapsto & \frac{H\otimes 1-1\otimes H}{4}, \\ B &\mapsto & \frac{Δ(Λ)}{2}, \\ C &\mapsto & E\otimes F-F\otimes E. \end{eqnarray*} By pulling back via $\natural$ any $U(\mathfrak{sl}_2)\otimes U(\mathfrak{sl}_2)$-module can be considered as an $\mathcal H$-module. For any integer $n\geq 0$ there exists a unique $(n+1)$-dimensional irreducible $U(\mathfrak{sl}_2)$-module $L_n$ up to isomorphism. We study the decomposition of the $\mathcal H$-module $L_m\otimes L_n$ for any integers $m,n\geq 0$. We link these results to the Terwilliger algebras of Johnson graphs. We express the dimensions of the Terwilliger algebras of Johnson graphs in terms of binomial coefficients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源