论文标题

神经连续时间马尔可夫模型

Neural Continuous-Time Markov Models

论文作者

Reeves, Majerle, Bhat, Harish S.

论文摘要

连续时间马尔可夫链用于模拟随机系统,其中可能在不规则时间发生过渡,例如出生死亡过程,化学反应网络,种群动力学和基因调节网络。我们开发了一种从完全观察到的时间序列中学习连续时间马尔可夫链的过渡速率函数的方法。与现有方法相反,我们的方法允许过渡速率非线性地依赖于状态变量和外部协变量。 Gillespie算法用于生成已知倾向函数(反应速率)的随机系统的轨迹。我们的方法可以看作是反向的:随机反应网络的给定轨迹,我们生成倾向函数的估计值。尽管以前的方法使用线性或对数线性方法将过渡速率与协变量联系起来,但我们使用神经网络,提高了学习模型的容量和潜在准确性。在化学背景下,这使该方法能够从非质量动力学中学习倾向功能。我们使用来自具有已知过渡速率的各种系统生成的合成数据来测试我们的方法。我们表明,从地面真相和预测的过渡速率之间的平均绝对误差方面,我们的方法比对数线性方法更准确地学习了这些过渡速率。我们还展示了我们的方法应用于连续时间马尔可夫链的开环控制。

Continuous-time Markov chains are used to model stochastic systems where transitions can occur at irregular times, e.g., birth-death processes, chemical reaction networks, population dynamics, and gene regulatory networks. We develop a method to learn a continuous-time Markov chain's transition rate functions from fully observed time series. In contrast with existing methods, our method allows for transition rates to depend nonlinearly on both state variables and external covariates. The Gillespie algorithm is used to generate trajectories of stochastic systems where propensity functions (reaction rates) are known. Our method can be viewed as the inverse: given trajectories of a stochastic reaction network, we generate estimates of the propensity functions. While previous methods used linear or log-linear methods to link transition rates to covariates, we use neural networks, increasing the capacity and potential accuracy of learned models. In the chemical context, this enables the method to learn propensity functions from non-mass-action kinetics. We test our method with synthetic data generated from a variety of systems with known transition rates. We show that our method learns these transition rates with considerably more accuracy than log-linear methods, in terms of mean absolute error between ground truth and predicted transition rates. We also demonstrate an application of our methods to open-loop control of a continuous-time Markov chain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源