论文标题
对象弹出的无源深度
Source-free Depth for Object Pop-out
论文作者
论文摘要
已知深度线索可用于视觉感知。但是,直接测量深度通常是不切实际的。幸运的是,基于现代学习的方法通过推断野外提供了有希望的深度图。在这项工作中,我们使用3D中的对象“弹出”将这种深度推理模型调整为对象分割。 “弹出”是一个简单的构图,假设对象位于背景表面上。这种成分先验使我们能够在3D空间中推理对象。更具体地说,我们调整了推断的深度图,以便只能使用3D信息本地化对象。但是,这种分离需要有关接触表面的知识,我们使用分割掩模的弱监督学学习。我们对接触表面的中间表示,从而纯粹在3D中对物体进行推理,使我们能够更好地将深度知识转移到语义上。提出的适应方法仅使用深度模型,而无需用于培训的源数据,从而使学习过程有效且实用。我们在八个具有挑战性任务的八个数据集上进行的实验,即伪装的对象检测和显着对象检测,始终在性能和概括性方面证明了我们方法的好处。
Depth cues are known to be useful for visual perception. However, direct measurement of depth is often impracticable. Fortunately, though, modern learning-based methods offer promising depth maps by inference in the wild. In this work, we adapt such depth inference models for object segmentation using the objects' "pop-out" prior in 3D. The "pop-out" is a simple composition prior that assumes objects reside on the background surface. Such compositional prior allows us to reason about objects in the 3D space. More specifically, we adapt the inferred depth maps such that objects can be localized using only 3D information. Such separation, however, requires knowledge about contact surface which we learn using the weak supervision of the segmentation mask. Our intermediate representation of contact surface, and thereby reasoning about objects purely in 3D, allows us to better transfer the depth knowledge into semantics. The proposed adaptation method uses only the depth model without needing the source data used for training, making the learning process efficient and practical. Our experiments on eight datasets of two challenging tasks, namely camouflaged object detection and salient object detection, consistently demonstrate the benefit of our method in terms of both performance and generalizability.