论文标题
Q-Flexible曲线的Viro-Zvonilov型不等式
A Viro-Zvonilov-type inequality for Q-flexible curves of odd degree
论文作者
论文摘要
我们为奇数柔性曲线定义了Arnold表面的类似物,并使用它来双分支覆盖$ Q $ flixible-Flexible Embeddings,其中$ q $ fleflibible是一种条件,可以添加到灵活曲线的经典概念中。这使我们能够获得一个viro-zvonilov型不等式:上限上的曲线曲线的非空椭圆形数量。我们研究了在二足动物中灵活曲线的方法,以在两种情况下得出相似的结合。我们还介绍了不可取向的灵活曲线的可能定义,我们的方法仍然有效,并且类似的不平等存在。
We define an analogue of the Arnold surface for odd degree flexible curves, and we use it to double branch cover $Q$-flexible embeddings, where $Q$-flexible is a condition to be added to the classical notion of a flexible curve. This allows us to obtain a Viro--Zvonilov-type inequality: an upper bound on the number of non-empty ovals of a curve of odd degree. We investigate our method for flexible curves in a quadric to derive a similar bound in two cases. We also digress around a possible definition of non-orientable flexible curves, for which our method still works and a similar inequality holds.