论文标题

来自泵探针热素侵占信号的深度依赖性导热率轮廓的机器学习重建

Machine learning reconstruction of depth-dependent thermal conductivity profile from pump-probe thermoreflectance signals

论文作者

Xiang, Zeyu, Pang, Yu, Qian, Xin, Yang, Ronggui

论文摘要

表征具有空间变化的热导率的材料对于揭示各种功能材料的结构质质关系是重要的,例如化学蒸气散热的钻石,离子辐射的材料,辐射下的核材料和电池电极材料。尽管基于时间/频域的热心型(TDTR/FDTR)的热导率显微镜的发展启用了热导率的平面内扫描,但测量依赖于深度依赖性的导热率仍然具有挑战性。这项工作提出了一种基于机器学习的重建方法,用于直接从频域相信号中提取深度依赖性导热率k(z)。我们证明了简单的监督学习算法内核脊回归(KRR)可以重建k(z),而无需对轮廓的功能形式进行预知。重建方法不仅可以准确地再现典型的K(Z)分布,例如化学蒸气 - 滴定(CVD)钻石的预定指数曲线和离子辐射材料的高斯概况,而且还通过叠加高斯,指数,指数,指数,多种型和对数的叠加型构建的复杂曲线。除FDTR外,该方法还显示了从TDTR信号重建离子辐照的半导体K(Z)的出色性能。这项工作表明,将机器学习与泵浦探针热心型结合在一起是进行深度依赖性热性能映射的有效方法。

Characterizing materials with spatially varying thermal conductivities is significant to unveil the structure-property relation for a wide range of functional materials, such as chemical-vapor-deposited diamonds, ion-irradiated materials, nuclear materials under radiation, and battery electrode materials. Although the development of thermal conductivity microscopy based on time/frequency-domain thermoreflectance (TDTR/FDTR) enabled in-plane scanning of thermal conductivity profile, measuring depth-dependent thermal conductivity remains challenging. This work proposed a machine-learning-based reconstruction method for extracting depth-dependent thermal conductivity K(z) directly from frequency-domain phase signals. We demonstrated that the simple supervised-learning algorithm kernel ridge regression (KRR) can reconstruct K(z) without requiring pre-knowledge about the functional form of the profile. The reconstruction method can not only accurately reproduce typical K(z) distributions such as the pre-assumed exponential profile of chemical-vapor-deposited (CVD) diamonds and Gaussian profile of ion-irradiated materials, but also complex profiles artificially constructed by superimposing Gaussian, exponential, polynomial, and logarithmic functions. In addition to FDTR, the method also shows excellent performances of reconstructing K(z) of ion-irradiated semiconductors from TDTR signals. This work demonstrates that combining machine learning with pump-probe thermoreflectance is an effective way for depth-dependent thermal property mapping.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源