论文标题

利用上下文数据增强可推广黑色素瘤检测

Leveraging Contextual Data Augmentation for Generalizable Melanoma Detection

论文作者

DiSanto, Nick, Harding, Gavin, Martinez, Ethan, Sanders, Benjamin

论文摘要

尽管多年来,皮肤癌检测一直是宝贵的深度学习应用,但其评估通常忽略了评估测试图像的背景。传统的黑色素瘤分类器假设其测试环境与他们接受过的结构化图像相媲美。本文挑战了这一观念,并认为摩尔大小是专业皮肤病学中的关键属性,在自动黑色素瘤检测中可能会误导。虽然恶性黑色素瘤往往比良性黑色素瘤大,但如果不可能,仅依靠大小的大小可能是不可靠的,甚至可能是有害的。为了解决此问题,该实施提出了一个自定义模型,该模型执行各种数据增强程序,以防止过度适合不正确的参数并模拟黑色素瘤检测应用程序的真实用法。采用不同形式的数据增强的多种自定义模型将实施以突出摩尔分类器的最重要功能。这些实现强调了在部署此类应用程序时考虑用户不可预测性的重要性。确认手动修改数据时需要的谨慎,因为这可能导致数据丢失和偏见。此外,考虑了数据增强在皮肤病学和深度学习群落中的重要性。

While skin cancer detection has been a valuable deep learning application for years, its evaluation has often neglected the context in which testing images are assessed. Traditional melanoma classifiers assume that their testing environments are comparable to the structured images they are trained on. This paper challenges this notion and argues that mole size, a critical attribute in professional dermatology, can be misleading in automated melanoma detection. While malignant melanomas tend to be larger than benign melanomas, relying solely on size can be unreliable and even harmful when contextual scaling of images is not possible. To address this issue, this implementation proposes a custom model that performs various data augmentation procedures to prevent overfitting to incorrect parameters and simulate real-world usage of melanoma detection applications. Multiple custom models employing different forms of data augmentation are implemented to highlight the most significant features of mole classifiers. These implementations emphasize the importance of considering user unpredictability when deploying such applications. The caution required when manually modifying data is acknowledged, as it can result in data loss and biased conclusions. Additionally, the significance of data augmentation in both the dermatology and deep learning communities is considered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源