论文标题
具有单个节点属性的非马克维亚随机过程和时间网络的实用且可扩展的模拟
Practical and scalable simulations of non-Markovian stochastic processes and temporal networks with individual node properties
论文作者
论文摘要
离散的随机过程在自然系统中普遍存在,并在物理,生物化学,流行病学,社会学和金融中应用。尽管通常无法得出分析解决方案,但现有的仿真框架可以生成与随机现象基础的动力学定律兼容的随机轨迹。尽管如此,大多数仿真算法都假定系统动力学是无内存的(马尔可夫假设),在该假设下,未来的发生仅取决于系统的当前状态。这可以通过Gillespie算法进行有效而精确的模拟。但是,许多现实世界的系统本质上是非马克维亚人的,并且表现出记忆效应。这样的系统很难在分析上进行研究,并且当前的数值方法通常在计算上昂贵或受到强烈简化与经验数据冲突的假设的限制。为了解决这些局限性,我们介绍了基于拒绝的吉莱斯皮算法,用于非马克维亚反应(REGIR),这是一个通用且可扩展的框架,用于模拟具有任意事件间时间分布的非马克维亚随机系统。 Regir提供用户定义的精度,同时保留与经典吉莱斯皮算法相同的渐近计算复杂性。我们在Regir的近似准确性上得出了下限,并在三个代表性的非马科维亚系统类别中证明了其能力:(1)具有延迟的反应通道,(2)由个别反应物特性驱动的随机过程,以及(3)由节点活性控制的时间网络。在所有情况下,重度都准确地捕获了与内存有关的动态,并且在灵活性和效率方面都优于现有方法。
Discrete stochastic processes are prevalent in natural systems, with applications in physics, biochemistry, epidemiology, sociology, and finance. While analytic solutions often cannot be derived, existing simulation frameworks can generate stochastic trajectories compatible with the dynamical laws underlying the random phenomena. Still, most simulation algorithms assume the system dynamics are memoryless (Markovian assumption), under which assumption, future occurrences only depend on the system's present state. This enables efficient and exact simulation via the Gillespie algorithm. However, many real-world systems are inherently non-Markovian and exhibit memory effects. Such systems are difficult to study analytically, and current numerical methods are often computationally expensive or limited by strong simplifying assumptions that conflict with empirical data. To address these limitations, we introduce the Rejection-based Gillespie algorithm for non-Markovian Reactions (REGIR), a general and scalable framework for simulating non-Markovian stochastic systems with arbitrary inter-event time distributions. REGIR provides user-defined accuracy while preserving the same asymptotic computational complexity as the classical Gillespie algorithm. We derive a lower bound on REGIR's approximation accuracy and demonstrate its capabilities across three representative classes of non-Markovian systems: (1) reaction channels with delays, (2) stochastic processes driven by individual reactant properties, and (3) temporal networks governed by node activity. In all cases, REGIR accurately captures memory-dependent dynamics and outperforms existing approaches in terms of flexibility and efficiency.