论文标题
使用精确和快速张量网络收缩验证量子苏联实验
Validating quantum-supremacy experiments with exact and fast tensor network contraction
论文作者
论文摘要
量子至高无上的实验,例如Google Sycamore [Nature \ TextBf {574},505(2019)],由于指数增加的计算成本,对经典验证构成了巨大挑战。使用新一代Sunway超级计算机在$ 8.5 $天数之内,我们通过为实验生成的Bitsring计算300万精确振幅提供直接验证,获得XEB Fidelity $ 0.191 \%\%$(估计值为0.2224美元\%$ $ $)。模拟能力的飞跃是建立在多幅度张量网络收缩算法上的,该算法会系统地利用当前超级指定器的``经典优势''(固有的``经典优势''(固有的'von neumann机器的固有``商店和计算)操作模式),融合了融合的tensor网络网络contraction contaction algorithM,从而使架构构造了构造,以提高架构的架构。我们的方法在解决量子多体问题,统计问题以及组合优化问题方面具有深远的影响。
The quantum supremacy experiment, such as Google Sycamore [Nature \textbf{574}, 505 (2019)], poses great challenge for classical verification due to the exponentially-increasing compute cost. Using a new-generation Sunway supercomputer within $8.5$ days, we provide a direct verification by computing three million exact amplitudes for the experimentally generated bitstrings, obtaining an XEB fidelity of $0.191\%$ (the estimated value is $0.224\%$). The leap of simulation capability is built on a multiple-amplitude tensor network contraction algorithm which systematically exploits the ``classical advantage" (the inherent ``store-and-compute" operation mode of von Neumann machines) of current supercomputers, and a fused tensor network contraction algorithm which drastically increases the compute efficiency on heterogeneous architectures. Our method has a far-reaching impact in solving quantum many-body problems, statistical problems as well as combinatorial optimization problems.