论文标题
预测性屏障Lyapunov函数基于空中操纵器的安全轨迹跟踪的控制
Predictive Barrier Lyapunov Function Based Control for Safe Trajectory Tracking of an Aerial Manipulator
论文作者
论文摘要
本文提出了一个新型的控制器框架,该框架为空中操纵器(AM)提供轨迹跟踪,同时确保系统在未知的界定干扰下的安全操作。此处考虑的是一个刻有无人机上的二高(自由度)操纵器。我们提出的控制器结构遵循用于态度动力学的常规内部环PID控制和用于跟踪参考轨迹的外环控制器。外圈控制基于模型预测控制(MPC),其使用屏障Lyapunov函数(BLF)得出的约束,用于AM的安全操作。基于BLF的约束是针对两个目标提出的,即。 1)避免AM与矩形壁(例如矩形壁)相撞,以及2)将操纵器的最终效应器保持在所需的工作空间中。拟议的BLF确保即使存在未知的界限,即使存在上述目标也可以满足上述目标。提出的控制器的功能是通过高保真的非线性模拟证明的,其参数来自真实的实验室规模AM。我们将控制器的性能与AM的其他最先进的MPC控制器进行了比较。
This paper proposes a novel controller framework that provides trajectory tracking for an Aerial Manipulator (AM) while ensuring the safe operation of the system under unknown bounded disturbances. The AM considered here is a 2-DOF (degrees-of-freedom) manipulator rigidly attached to a UAV. Our proposed controller structure follows the conventional inner loop PID control for attitude dynamics and an outer loop controller for tracking a reference trajectory. The outer loop control is based on the Model Predictive Control (MPC) with constraints derived using the Barrier Lyapunov Function (BLF) for the safe operation of the AM. BLF-based constraints are proposed for two objectives, viz. 1) To avoid the AM from colliding with static obstacles like a rectangular wall, and 2) To maintain the end effector of the manipulator within the desired workspace. The proposed BLF ensures that the above-mentioned objectives are satisfied even in the presence of unknown bounded disturbances. The capabilities of the proposed controller are demonstrated through high-fidelity non-linear simulations with parameters derived from a real laboratory scale AM. We compare the performance of our controller with other state-of-the-art MPC controllers for AM.