论文标题

要了解合奏机器学习中的公平及其组成

Towards Understanding Fairness and its Composition in Ensemble Machine Learning

论文作者

Gohar, Usman, Biswas, Sumon, Rajan, Hridesh

论文摘要

机器学习(ML)软件已在现代社会中广泛采用,报告了基于种族,性别,年龄等的少数群体的公平意义。许多最近的作品提出了拟议的方法来测量和减轻ML模型中的算法偏见。现有方法集中于基于单分类器的ML模型。但是,现实世界中的ML模型通常由合奏中的多个独立或依赖的学习者(例如随机森林)组成,而公平性则以非平凡的方式构成。合奏如何构成公平?学习者对合奏的最终公平性有什么公平影响?公平的学习者可以导致不公平的合奏吗?此外,研究表明,超参数会影响ML模型的公平性。整体超参数更为复杂,因为它们会影响学习者如何组合在不同类别的合奏中。了解合奏超标者对公平性的影响将帮助程序员设计公平的合奏。今天,我们对不同的集合算法完全不了解这些。在本文中,我们全面研究了流行的现实世界合奏:包装,增强,堆叠和投票。我们已经开发了从Kaggle收集的四个流行公平数据集中收集的168个集合模型的基准。我们使用现有的公平指标来了解公平的组成。我们的结果表明,合奏可以设计为不使用缓解技术的公平。我们还确定了公平组成和数据特征之间的相互作用,以指导公平集成设计。最后,我们可以利用我们的基准来对公平合奏进行进一步研究。据我们所知,这是文献中尚未介绍的合奏中关于公平构成的第一批也是最大的研究之一。

Machine Learning (ML) software has been widely adopted in modern society, with reported fairness implications for minority groups based on race, sex, age, etc. Many recent works have proposed methods to measure and mitigate algorithmic bias in ML models. The existing approaches focus on single classifier-based ML models. However, real-world ML models are often composed of multiple independent or dependent learners in an ensemble (e.g., Random Forest), where the fairness composes in a non-trivial way. How does fairness compose in ensembles? What are the fairness impacts of the learners on the ultimate fairness of the ensemble? Can fair learners result in an unfair ensemble? Furthermore, studies have shown that hyperparameters influence the fairness of ML models. Ensemble hyperparameters are more complex since they affect how learners are combined in different categories of ensembles. Understanding the impact of ensemble hyperparameters on fairness will help programmers design fair ensembles. Today, we do not understand these fully for different ensemble algorithms. In this paper, we comprehensively study popular real-world ensembles: bagging, boosting, stacking and voting. We have developed a benchmark of 168 ensemble models collected from Kaggle on four popular fairness datasets. We use existing fairness metrics to understand the composition of fairness. Our results show that ensembles can be designed to be fairer without using mitigation techniques. We also identify the interplay between fairness composition and data characteristics to guide fair ensemble design. Finally, our benchmark can be leveraged for further research on fair ensembles. To the best of our knowledge, this is one of the first and largest studies on fairness composition in ensembles yet presented in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源