论文标题

通过测量参数化场理论的重力途径

Paths to gravitation via the gauging of parameterized field theories

论文作者

Koivisto, Tomi S, Zlosnik, Tom

论文摘要

在特殊的相关物理学中,时空充满了固定的非动态度量张量。引力理论的一种途径是将这种张量提升为真正的动力学领域。对特殊相关物理学的替代描述涉及不固定的几何形状,而是包含标量字段$ x^{i}(x^μ)$,该$可能会动态地采用时空中惯性坐标的形式。这表明了一种重力的替代方法,在全球庞加莱转型下的行动不变性通过$ x^{i} $的变换促进了当地的庞加莱或当地的洛伦兹对称,通过引入量规场。与一般相对论相比,讨论了所得重力理论的共同点和出发点。结果表明,基于局部洛伦兹对称性的模型是一般相对性的扩展,可以将时间标准引入引力场的动力学中,并允许由Minkowski公制或平坦的Euclidean signature Mignature Metric所描述的空间,尽管具有具有非零曲线的重力球场。

In special-relativistic physics, spacetime is imbued with a fixed, non-dynamical metric tensor. A path to gravitational theory is to promote this tensor to a genuine dynamical field. An alternative description of special-relativistic physics involves no fixed geometry but instead the inclusion of scalar fields $X^{I}(x^μ)$ which dynamically may take the form of inertial coordinates in spacetime. This suggests an alternative approach to gravity where the invariance of actions under global Poincaré transformations of $X^{I}$ is promoted to either a local Poincaré or local Lorentz symmetry via the introduction of gauge fields. Points of commonality and departure of the resulting gravitational theories as compared to General Relativity are discussed. It is shown that the model based on local Lorentz symmetry is an extension of General Relativity that can introduce a standard of time into the dynamics of the gravitational field and allows for spacetimes described by a Minkowski metric or flat Euclidean signature metric despite the gravitational gauge field possessing non-zero curvature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源