论文标题
任意静态,球形对称的空间时间作为标量张紧力的解决方案
Arbitrary static, spherically symmetric space-times as solutions of scalar-tensor gravity
论文作者
论文摘要
结果表明,可以将任意静态的,球体对称度量标准表示为重力标量理论(STT)的精确解决方案,具有某些非微小耦合函数$ f(ϕ)$和电位$ u(ϕ)$。该表示形式中的标量字段可以将其性质从某些坐标球上的典型变为幻影。但是,这种表示通常在径向坐标的整个范围内,而是分段。讨论了STT表示形式的两个示例:对于Reissner-NordströmMetric和Simpson-Visser的正规化Schwarzschild Metric(所谓的黑色弹跳时空)。
It is shown that an arbitrary static, spherically symmetric metric can be presented as an exact solution of a scalar-tensor theory (STT) of gravity with certain nonminimal coupling function $f(ϕ)$ and potential $U(ϕ)$. The scalar field in this representation can change its nature from canonical to phantom on certain coordinate spheres. This representation, however, is valid in general not in the full range of the radial coordinate but only piecewise. Two examples of STT representations are discussed: for the Reissner-Nordström metric and for the Simpson-Visser regularization of the Schwarzschild metric (the so-called black bounce space-time).