论文标题

Spin-1中央旋转XX模型中的集成性和淬灭动力学

Integrability and quench dynamics in the spin-1 central spin XX model

论文作者

Tang, Long-Hin, Long, David M., Polkovnikov, Anatoli, Chandran, Anushya, Claeys, Pieter W.

论文摘要

中央旋转模型提供了对中央自由度与周围旋转介观环境之间相互作用的理想描述。我们表明,在中心有旋转1的模型家族,而任意强度与周围旋转的XX相互作用是可以集成的。具体而言,我们得出了一组广泛的保守量,并使用Bethe Ansatz获得了精确的本征态。与同质极限一样,状态分为两个指数级的较大阶层:明亮的状态,其中自旋-1与周围环境和黑暗状态纠缠不清。在共振上,明亮的状态取决于中央自旋极化为零的状态的重量,进一步分为两类。这些类是在淬灭动力学中探测的,在这种动力学中,它们可以防止中央自旋达到热平衡。在单个自旋式扇形中,我们明确构建了明亮的状态,并表明中央旋转表现出振荡动力学,这是由于这些特征状态的半定位。我们将集成性与紧密相关的Richardson-Gaudin模型的类别相关联,并认为Spin-$ s $ Central Spin XX模型对于任何$ S $都可以集成。

Central spin models provide an idealized description of interactions between a central degree of freedom and a mesoscopic environment of surrounding spins. We show that the family of models with a spin-1 at the center and XX interactions of arbitrary strength with surrounding spins is integrable. Specifically, we derive an extensive set of conserved quantities and obtain the exact eigenstates using the Bethe ansatz. As in the homogenous limit, the states divide into two exponentially large classes: bright states, in which the spin-1 is entangled with its surroundings, and dark states, in which it is not. On resonance, the bright states further break up into two classes depending on their weight on states with central spin polarization zero. These classes are probed in quench dynamics wherein they prevent the central spin from reaching thermal equilibrium. In the single spin-flip sector we explicitly construct the bright states and show that the central spin exhibits oscillatory dynamics as a consequence of the semilocalization of these eigenstates. We relate the integrability to the closely related class of integrable Richardson-Gaudin models, and conjecture that the spin-$s$ central spin XX model is integrable for any $s$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源