论文标题
部分可观测时空混沌系统的无模型预测
Descent of tautological sheaves from Hilbert schemes to Enriques manifolds
论文作者
论文摘要
令$ x $为K3表面,双重覆盖了Enriques Surface $ s $。如果$ n \ in \ mathbb {n} $是一个奇数,则$ n $ -points $ x^{[n]} $的希尔伯特方案允许自然的$ s _ {[n]} $。从Oguiso和Schröer的意义上讲,这种商是一个富裕的歧管。在本文中,我们在$ s _ {[n]} $上构建坡度稳定的滑轮并研究其某些属性。
Let $X$ be a K3 surface which doubly covers an Enriques surface $S$. If $n\in\mathbb{N}$ is an odd number, then the Hilbert scheme of $n$-points $X^{[n]}$ admits a natural quotient $S_{[n]}$. This quotient is an Enriques manifold in the sense of Oguiso and Schröer. In this paper we construct slope stable sheaves on $S_{[n]}$ and study some of their properties.