论文标题

神经种群代码特性设定的神经形态电路设计的限制

Constraints on the design of neuromorphic circuits set by the properties of neural population codes

论文作者

Panzeri, Stefano, Janotte, Ella, Pequeño-Zurro, Alejandro, Bonato, Jacopo, Bartolozzi, Chiara

论文摘要

在大脑中,信息是在分布在神经元种群上的动作电位时机上的行为层面上进行编码,传输和用于告知行为的。为了在计算机中实施类似神经的系统,模仿神经功能并与大脑成功接口,神经形态电路需要以与大脑中神经元种群使用的方式编码信息。为了促进神经形态工程和神经科学之间的串扰,在这篇综述中,我们首先批判性地检查和总结了有关神经元种群如何编码和传输信息的新兴发现。我们研究了神经种群活动的不同特征的信息的影响,即神经表征的稀疏性,神经特性的异质性,神经元之间的异质性,神经元之间的相关性以及神经元的时间尺度(从短到长)编码信息并随着时间的推移而始终如一地编码信息并保持其一致。最后,我们批判性地详细介绍了这些事实如何限制神经形态电路中信息编码的设计。我们主要关注对与大脑通信的神经形态电路的含义,因为在这种情况下,人工和生物神经元必须使用兼容的神经代码。但是,我们还讨论了对神经形态系统设计对神经计算的实施或仿真的影响。

In the brain, information is encoded, transmitted and used to inform behaviour at the level of timing of action potentials distributed over population of neurons. To implement neural-like systems in silico, to emulate neural function, and to interface successfully with the brain, neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain. To facilitate the cross-talk between neuromorphic engineering and neuroscience, in this Review we first critically examine and summarize emerging recent findings about how population of neurons encode and transmit information. We examine the effects on encoding and readout of information for different features of neural population activity, namely the sparseness of neural representations, the heterogeneity of neural properties, the correlations among neurons, and the time scales (from short to long) at which neurons encode information and maintain it consistently over time. Finally, we critically elaborate on how these facts constrain the design of information coding in neuromorphic circuits. We focus primarily on the implications for designing neuromorphic circuits that communicate with the brain, as in this case it is essential that artificial and biological neurons use compatible neural codes. However, we also discuss implications for the design of neuromorphic systems for implementation or emulation of neural computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源