论文标题
高几幅功能的分化身份
Differentiation identities for hypergeometric functions
论文作者
论文摘要
众所周知,高几何函数的差异乘以某个功率函数会产生另一个具有不同参数集的高几幅函数。高几幅功能的这种分化身份已在应用数学和自然科学的各个领域广泛使用。在此说明中,我们提供了一个简单的差异化身份证明,该证明仅基于幂级数膨胀超几何函数的系数的定义。
It is well-known that differentiation of hypergeometric function multiplied by a certain power function yields another hypergeometric function with a different set of parameters. Such differentiation identities for hypergeometric functions have been used widely in various fields of applied mathematics and natural sciences. In this expository note, we provide a simple proof of the differentiation identities, which is based only on the definition of the coefficients for the power series expansion of the hypergeometric functions.