论文标题
季节性传染病的不可预测性传播
Unpredictability in seasonal infectious diseases spread
论文作者
论文摘要
在这项工作中,我们研究了带有季节性强迫模型的季节性传染病的不可预测性。为了研究动力学行为,我们计算分叉图类型滞后及其各自的Lyapunov指数。我们来自分叉和最大的Lyapunov指数的结果显示了模型所有参数的双态动力学。选择潜在时期作为控制参数的倒数,超过70%的间隔包括周期性和混乱吸引子的共存,可动力学。尽管这些吸引子之间的竞争竞争,但混乱的人还是优先的。双重性发生在两个宽区域。这些区域之一受周期性吸引子的限制,而周期性和混乱的吸引子则绑定了另一个。由于第二Biscable区域的边界由周期性和混乱的吸引子组成,因此可以将这些临界点解释为倾斜点。换句话说,根据潜在时期,定期吸引子(可预测性)可以演变为混乱的吸引子(不可预测性)。因此,我们表明,不可预测性与可混乱的动力学优选有关,此外,还有一个与不可预测的动力学相关的转折点。
In this work, we study the unpredictability of seasonal infectious diseases considering a SEIRS model with seasonal forcing. To investigate the dynamical behaviour, we compute bifurcation diagrams type hysteresis and their respective Lyapunov exponents. Our results from bifurcations and the largest Lyapunov exponent show bistable dynamics for all the parameters of the model. Choosing the inverse of latent period as control parameter, over 70% of the interval comprises the coexistence of periodic and chaotic attractors, bistable dynamics. Despite the competition between these attractors, the chaotic ones are preferred. The bistability occurs in two wide regions. One of these regions is limited by periodic attractors, while periodic and chaotic attractors bound the other. As the boundary of the second bistable region is composed of periodic and chaotic attractors, it is possible to interpret these critical points as tipping points. In other words, depending on the latent period, a periodic attractor (predictability) can evolve to a chaotic attractor (unpredictability). Therefore, we show that unpredictability is associated with bistable dynamics preferably chaotic, and, furthermore, there is a tipping point associated with unpredictable dynamics.