论文标题
差异私有的贝叶斯一致性
Differentially-Private Bayes Consistency
论文作者
论文摘要
我们构建了满足差异隐私(DP)的普遍贝叶斯一致的学习规则。我们首先处理二进制分类的设置,然后将我们的规则扩展到密度估计的更通用的设置(相对于总变异指标)。普遍一致的DP学习者的存在揭示了与无分配PAC模型的明显差异。确实,在后一个DP中,学习非常有限:即使是一维线性分类器在此严格的模型中也不是私人学习的。因此,我们的结果表明,通过允许学习率取决于目标分布,可以避免上述不可能结果,实际上,通过单个DP算法学习\ emph {任意}分布。作为一个应用程序,我们证明,任何VC类都可以在半监视的设置中私人学习,而$ \ tilde {o}(d/\ varepsilon)的样本复杂度接近最佳的\ emph {labeLed}样本复杂性,并具有标记的示例(并且具有未标记的样品复杂性,并且取决于目标分布)。
We construct a universally Bayes consistent learning rule that satisfies differential privacy (DP). We first handle the setting of binary classification and then extend our rule to the more general setting of density estimation (with respect to the total variation metric). The existence of a universally consistent DP learner reveals a stark difference with the distribution-free PAC model. Indeed, in the latter DP learning is extremely limited: even one-dimensional linear classifiers are not privately learnable in this stringent model. Our result thus demonstrates that by allowing the learning rate to depend on the target distribution, one can circumvent the above-mentioned impossibility result and in fact, learn \emph{arbitrary} distributions by a single DP algorithm. As an application, we prove that any VC class can be privately learned in a semi-supervised setting with a near-optimal \emph{labeled} sample complexity of $\tilde{O}(d/\varepsilon)$ labeled examples (and with an unlabeled sample complexity that can depend on the target distribution).